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In this part…
 ✓ Use histograms to provide a visual of the distribution of elements 

in a data set. A histogram can show which values occur most 
frequently, the smallest and largest values, how spread out these 
values are.

 ✓ Create graphs that reflect non-numerical data, such as colors, 
flavors, brand names, and so on. Graphs are used where 
numerical measures are difficult or impossible to compute.

 ✓ Identify the center of a data set by using the mean (the aver-
age), median (the middle), and mode (the most commonly 
occurring value). These are known as the measures of central 
tendencies.

 ✓ Use formulas for computing covariance and correlation for 
both samples and populations; a scatter plot is used to show 
the relationship (if there is one) between two variables.



Chapter 1

The Art and Science of  
Business Statistics

In This Chapter
▶ Looking at the key properties of data
▶ Understanding probability’s role in business
▶ Sampling distributions
▶ Drawing conclusions based on results

T 
his chapter provides a brief introduction to the concepts that are  
covered throughout the book. I introduce several important techniques 

that allow you to measure and analyze the statistical properties of real-world 
variables, such as stock prices, interest rates, corporate profits, and so on.

Statistical analysis is widely used in all business disciplines. For example, 
marketing researchers analyze consumer spending patterns in order to  
properly plan new advertising campaigns. Organizations use management  
consulting to determine how efficiently resources are being used. Manufacturers 
use quality control methods to ensure the consistency of the products they 
are producing. These types of business applications and many others are 
heavily based on statistical analysis. 

Financial institutions use statistics for a wide variety of applications. For 
example, a pension fund may use statistics to identify the types of securities 
that it should hold in its investment portfolio. A hedge fund may use statistics 
to identify profitable trading opportunities. An investment bank may forecast 
the future state of the economy in order to determine which new assets it 
should hold in its own portfolio.

Whereas statistics is a quantitative discipline, the ultimate objective of  
statistical analysis is to explain real-world events. This means that in addition 
to the rigorous application of statistical methods, there is always a great deal 
of room for judgment. As a result, you can think of statistical analysis as both 
a science and an art; the art comes from choosing the appropriate statistical 
technique for a given situation and correctly interpreting the results.
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Representing the Key Properties of Data
The word data refers to a collection of quantitative (numerical) or qualitative 
(non-numerical) values. Quantitative data may consist of prices, profits, 
sales, or any variable that can be measured on a numerical scale. Qualitative 
data may consist of colors, brand names, geographic locations, and so on. 
Most of the data encountered in business applications are quantitative.

 The word data is actually the plural of datum; datum refers to a single value, 
while data refers to a collection of values.

You can analyze data with graphical techniques or numerical measures. I 
explore both options in the following sections.

Analyzing data with graphs
Graphs are a visual representation of a data set, making it easy to see  
patterns and other details. Deciding which type of graph to use depends on 
the type of data you’re trying to analyze. Here are some of the more common 
types of graphs used in business statistics:

 ✓ Histograms: A histogram shows the distribution of data among different 
intervals or categories, using a series of vertical bars.

 ✓ Line graphs: A line graph shows how a variable changes over time.

 ✓ Pie charts: A pie chart shows how data is distributed between different 
categories, illustrated as a series of slices taken from a pie.

 ✓ Scatter plots (scatter diagrams): A scatter plot shows the relationship 
between two variables as a series of points. The pattern of the points 
indicates how closely related the two variables are.

Histograms
You can use a histogram with either quantitative or qualitative data. It’s 
designed to show how a variable is distributed among different categories. 
For example, suppose that a marketing firm surveys 100 consumers to  
determine their favorite color. The responses are

Red: 23
Blue: 44
Yellow: 12
Green: 21
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The results can be illustrated with a histogram, with each color in a single 
category. The heights of the bars indicate the number of responses for each 
color, making it easy to see which colors are the most popular (see Figure 1-1).

 

Figure 1-1:  
A histogram  

for preferred 
colors.

 
 Illustration by Wiley, Composition Services Graphics

Based on the histogram, you can see at a glance that blue is the most popular 
choice, while yellow is the least popular choice.

Line graphs
You can use a line graph with quantitative data. It shows the values of a  
variable over a given interval of time. For example, Figure 1-2 shows the daily 
price of gold between April 14, 2013 and June 2, 2013:

 

Figure 1-2: 
A line graph 

of gold 
prices.

 
 Illustration by Wiley, Composition Services Graphics
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With a line graph, it’s easy to see trends or patterns in a data set. In this 
example, the price of gold rose steadily throughout late April into mid-May 
before falling back in late May and then recovering somewhat at the end of 
the month. These types of graphs may be used by investors to identify which 
assets are likely to rise in the future based on their past performance.

Pie charts
Use a pie chart with quantitative or qualitative data to show the distribution 
of the data among different categories. For example, suppose that a chain 
of coffee shops wants to analyze its sales by coffee style. The styles that the 
chain sells are French Roast, Breakfast Blend, Brazilian Rainforest, Jamaica 
Blue Mountain, and Espresso. Figure 1-3 shows the proportion of sales for 
each style.

 

Figure 1-3: 
A pie chart 

for coffee 
sales.

 
 Illustration by Wiley, Composition Services Graphics

The chart shows that Espresso is the chain’s best-selling style, while Jamaica 
Blue Mountain accounts for the smallest percentage of the chain’s sales.

Scatter plots
A scatter plot is designed to show the relationship between two quantitative 
variables. For example, Figure 1-4 shows the relationship between a  
corporation’s sales and profits over the past 20 years.

Each point on the scatter plot represents profit and sales for a single year. 
The pattern of the points shows that higher levels of sales tend to be 
matched by higher levels of profits, and vice versa. This is called a positive 
trend in the data.
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Figure 1-4: 
A scatter 

plot show-
ing sales 

and profits.
 

 Illustration by Wiley, Composition Services Graphics

Defining properties and relationships  
with numerical measures
A numerical measure is a value that describes a key property of a data set. 
For example, to determine whether the residents of one city tend to be older 
than the residents in another city, you can compute and compare the  
average or mean age of the residents of each city.

Some of the most important properties of interest in a data set are the  
center of the data and the spread among the observations. I describe these 
properties in the following sections.

Finding the center of the data
To identify the center of a data set, you use measures that are known as  
measures of central tendency; the most important of these are the mean, 
median, and mode.

The mean represents the average value in a data set, while the median represents 
the midpoint. The median is a value that separates the data into two equal 
halves; half of the elements in the data set are less than the median, and the 
remaining half are greater than the median. The mode is the most commonly 
occurring value in the data set.
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The mean is the most widely used measure of central tendency, but it can 
give deceptive results if the data contain any unusually large or small values, 
known as outliers. In this case, the median provides a more representative 
measure of the center of the data. For example, median household income is 
usually reported by government agencies instead of mean household income. 
This is because mean household income is inflated by the presence of a small 
number of extremely wealthy households. As a result, median household  
income is thought to be a better measure of how standards of living are 
changing over time.

The mode can be used for either quantitative or qualitative data. For example, 
it could be used to determine the most common number of years of education 
among the employees of a firm. It could also be used to determine the most 
popular flavor sold by a soft drink manufacturer.

Measuring the spread of the data
Measures of dispersion identify how spread out a data set is, relative to the 
center. This provides a way of determining if the members of a data set tend 
to be very close to each other or if they tend to be widely scattered. Some of 
the most important measures of dispersion are

 ✓ Variance

 ✓ Standard deviation

 ✓ Percentiles

 ✓ Quartiles

 ✓ Interquartile range (IQR)

The variance is a measure of the average squared difference between the  
elements of a data set and the mean. The larger the variance, the more 
“spread out” the data is. Variance is often used as a measure of risk in business 
applications; for example, it can be used to show how much uncertainty 
there is over the returns on a stock.

The standard deviation is the square root of the variance, and is more  
commonly used than the variance (since the variance is expressed in squared 
units). For example, the variance of a series of gas prices is measured in 
squared dollars, which is difficult to interpret. The corresponding standard 
deviation is measured in dollars, which is much more intuitively clear.

Percentiles divide a data set into 100 equal parts, each consisting of 1 percent 
of the total. For example, if a student’s score on a standardized exam is in the 
80th percentile, then the student outscored 80 percent of the other students 
who took the exam. A quartile is a special type of percentile; it divides a data 
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set into four equal parts, each consisting of 25 percent of the total. The first 
quartile is the 25th percentile of a data set, the second quartile is the 50th 
percentile, and the third quartile is the 75th percentile. The interquartile 
range identifies the middle 50 percent of the observations in a data set; it 
equals the difference between the third and the first quartiles.

Determining the relationship between two variables
For some applications, you need to understand the relationship between  
two variables. For example, if an investor wants to understand the risk of a 
portfolio of stocks, it’s essential to properly measure how closely the returns 
on the stocks track each other. You can determine the relationship between 
two variables with two measures of association: covariance and correlation.

Covariance is used to measure the tendency for two variables to rise above 
their means or fall below their means at the same time. For example, suppose 
that a bioengineering company finds that increasing research and develop-
ment expenditures typically leads to an increase in the development of new 
patents. In this case, R&D spending and new patents would have a positive 
covariance. If the same company finds that rising labor costs typically reduce 
corporate profits, then labor costs and profits would have a negative covari-
ance. If the company finds that profits are not related to the average daily 
temperature, then these two variables will have a covariance that is very 
close to zero.

Correlation is a closely related measure. It’s defined as a value between –1 and 
1, so interpreting the correlation is easier than the covariance. For example, a 
correlation of 0.9 between two variables would indicate a very strong  
positive relationship, whereas a correlation of 0.2 would indicate a fairly 
weak but positive relationship. A correlation of –0.8 would indicate a very 
strong negative relationship; a correlation of –0.3 would indicate a weak  
negative relationship. A correlation of 0 would show that two variables are 
independent (that is, unrelated).

Probability: The Foundation  
of All Statistical Analysis

Probability theory provides a mathematical framework for measuring uncertainty. 
This area is important for business applications since all results from the 
field of statistics are ultimately based on probability theory. Understanding 
probability theory provides fundamental insights into all the statistical  
methods used in this book. 
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Probability is heavily based on the notion of sets. A set is a collection of 
objects. These objects may be numbers, colors, flavors, and so on. This  
chapter focuses on sets of numbers that may represent prices, rates of 
return, and so forth. Several mathematical operations may be applied to  
sets — union, intersection, and complement, for example.

The union of two sets is a new set that contains all the elements in the  
original two sets. The intersection of two sets is a set that contains only the 
elements contained in both of the two original sets (if any.) The complement of 
a set is a set containing elements that are not in the original set. For example, 
the complement of the set of black cards in a standard deck is the set  
containing all red cards.

Probability theory is based on a model of how random outcomes are generated, 
known as a random experiment. Outcomes are generated in such a way that 
all possible outcomes are known in advance, but the actual outcome isn’t 
known.

The following rules help you determine the probability of specific outcomes 
occurring:

 ✓ The addition rule

 ✓ The multiplication rule

 ✓ The complement rule

You use the addition rule to determine the probability of a union of two sets. 
The multiplication rule is used to determine the probability of an intersection 
of two sets. The complement rule is used to identify the probability that the 
outcome of a random experiment will not be an element in a specified set.

Random variables
A random variable assigns numerical values to the outcomes of a random 
experiment. For example, when you flip a coin twice, you’re performing a 
random experiment, since: 

 ✓ All possible outcomes are known in advance

 ✓ The actual outcome isn’t known in advance

The experiment consists of two trials. On each trial, the outcome must be a 
“head” or a “tail.”
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Assume that a random variable X is defined as the number of “heads” that 
turn up during the course of this experiment. X assigns values to the  
outcomes of this experiment as follows:

Outcome X
{TT} 0
{HT, TH} 1
{HH} 2

T represents a tail on a single flip

H represents a head on a single flip

TT represents two consecutive tails

HT represents a head followed by a tail

TH represents a tail followed by a head

HH represents two consecutive heads

X assigns a value of 0 to the outcome TT because no heads turned up. X 
assigns a value of 1 to both HT and TH because one head turned up in each 
case. Similarly, X assigns a value of 2 to HH because two heads turned up.

Probability distributions
A probability distribution is a formula or a table used to assign probabilities  
to each possible value of a random variable X. A probability distribution 
may be discrete, which means that X can assume one of a finite (countable) 
number of values, or continuous, in which case X can assume one of an  
infinite (uncountable) number of different values.

For the coin-flipping experiment from the previous section, the probability 
distribution of X could be a simple table that shows the probability of each 
possible value of X, written as P(X):

X P(X)
0 0.25
1 0.50
2 0.25
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The probability that X = 0 (that no heads turn up) equals 0.25 because this 
experiment has four equally likely outcomes: HH, HT, TH, and TT and in only 
one of those cases will there be no heads. You compute the other probabilities 
in a similar manner.

Discrete probability distributions
Several specialized discrete probability distributions are useful for specific 
applications. For business applications, three frequently used discrete  
distributions are:

 ✓ Binomial

 ✓ Geometric

 ✓ Poisson

You use the binomial distribution to compute probabilities for a process 
where only one of two possible outcomes may occur on each trial. The  
geometric distribution is related to the binomial distribution; you use the  
geometric distribution to determine the probability that a specified number 
of trials will take place before the first success occurs. You can use the 
Poisson distribution to measure the probability that a given number of events 
will occur during a given time frame. 

Continuous probability distributions
Many continuous distributions may be used for business applications; two of 
the most widely used are:

 ✓ Uniform

 ✓ Normal

The uniform distribution is useful because it represents variables that are 
evenly distributed over a given interval. For example, if the length of time 
until the next defective part arrives on an assembly line is equally likely to be 
any value between one and ten minutes, then you may use the uniform  
distribution to compute probabilities for the time until the next defective 
part arrives.

The normal distribution is useful for a wide array of applications in many  
disciplines. In business applications, variables such as stock returns are 
often assumed to follow the normal distribution. The normal distribution is 
characterized by a bell-shaped curve, and areas under this curve represent 
probabilities. The bell-shaped curve is shown in Figure 1-5.
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Figure 1-5: 
The bell-

shaped 
curve of the 

normal  
distribution.

 
 Illustration by Wiley, Composition Services Graphics

The normal distribution has many convenient statistical properties that make 
it a popular choice for statistical modeling. One of these properties is known 
as symmetry, the idea that the probabilities of values below the mean are 
matched by the probabilities of values that are equally far above the mean. 

Using Sampling Techniques  
and Sampling Distributions

Sampling is a branch of statistics in which the properties of a population are 
estimated from samples. A population is a collection of data that someone 
has an interest in studying. A sample is a selection of data randomly chosen 
from a population.

For example, if a university is interested in analyzing the distribution of grade 
point averages (GPAs) among its MBA students, the population of interest 
would be the GPAs of every MBA student at the university; a sample would 
consist of the GPAs of a set of randomly chosen MBA students.

Several approaches can be used for choosing samples; a sample is a subset of 
the underlying population.
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A statistic is a summary measure of a sample, while a parameter is a summary 
measure of a population. The properties of a statistic can be determined 
with a sampling distribution — a special type of probability distribution that 
describes the properties of a statistic.

The central limit theorem (CLT) gives the conditions under which the mean of 
a sample follows the normal distribution:

 ✓ The underlying population is normally distributed.

 ✓ The sample size is “large” (at least 30).

A detailed discussion of the central limit theorem can be found at http://
en.wikipedia.org/wiki/Central_limit_theorem.

Statistical Inference: Drawing 
Conclusions from Data

Statistical inference refers to the process of drawing conclusions about a  
population from randomly chosen samples. In the following sections, I  
discuss two techniques used for statistical inference: confidence intervals 
and hypothesis testing.

Confidence intervals
A confidence interval is a range of values that’s expected to contain the value 
of a population parameter with a specified level of confidence (such as 90 
percent, 95 percent, 99 percent, and so on). For example, you can construct a 
confidence interval for the population mean by following these steps:

 1. Estimate the value of the population mean by calculating the mean of 
a randomly chosen sample (known as the sample mean).

 2. Calculate the lower limit of the confidence interval by subtracting a 
margin of error from the sample mean.

 3. Calculate the upper limit of the confidence interval by adding the 
same margin of error to the sample mean.

The margin of error depends on the size of the sample used to construct the 
confidence interval, whether the population standard deviation is known, 
and the level of confidence chosen.

http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
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The resulting interval is known as a confidence interval. A confidence interval 
is constructed with a specified level of probability. For example, suppose you 
draw a sample of stocks from a portfolio, and you construct a 95 percent  
confidence interval for the mean return of the stocks in the entire portfolio:

(lower limit, upper limit) = (0.02, 0.08)

The returns on the entire portfolio are the population of interest. The mean 
return in each sample drawn is an estimate of the population mean. The 
sample mean will be slightly different each time a new sample is drawn, as 
will the confidence interval. If this process is repeated 100 times, 95 of the 
resulting confidence intervals will contain the true population mean.

Hypothesis testing
Hypothesis testing is a procedure for using sample data to draw conclusions 
about the characteristics of the underlying population.

The procedure begins with a statement, known as the null hypothesis. The 
null hypothesis is assumed to be true unless strong evidence against it is 
found. An alternative hypothesis — the result accepted if the null hypothesis 
is rejected — is also stated.

You construct a test statistic, and you compare it with a critical value (or 
values) to determine whether the null hypothesis should be rejected. The 
specific test statistic and critical value(s) depend on which population 
parameter is being tested, the size of the sample being used, and other  
factors.

If the test statistic is too extreme (for example, it’s too large compared with 
the critical value[s]) the null hypothesis is rejected in favor of the alternative 
hypothesis; otherwise, the null hypothesis is not rejected.

 If the null hypothesis isn’t rejected, this doesn’t necessarily mean that it’s 
true; it simply means that there is not enough evidence to justify rejecting it.

Hypothesis testing is a general procedure and can be used to draw conclu-
sions about many features of a population, such as its mean, variance, stan-
dard deviation, and so on.
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Simple regression analysis
Regression analysis uses sample data to estimate the strength and direction 
of the relationship between two or more variables. Simple regression analysis 
estimates the relationship between a dependent variable (Y) and a single 
independent variable (X).

For example, suppose you’re interested in analyzing the relationship between 
the annual returns of the Standard & Poor’s (S&P) 500 Index and the annual 
returns of Apple stock. You can assume that the returns of Apple stock are 
related to the returns to the S&P 500 because the index is a reflection of the  
overall strength of the economy. Therefore, the returns of Apple stock are 
the dependent variable (Y) and the returns of the S&P 500 are the independent 
variable (X). You can use regression analysis to measure the numerical  
relationship between the S&P 500 and Apple stock.

Simple regression analysis is based on the assumption that a linear relationship 
occurs between X and Y. A linear relationship takes this form:

Y is the dependent variable, X is the independent variable, m is the slope, and 
b is the intercept.

The slope tells you how much Y changes due to a specific change in X; the 
intercept tells you what the value of Y would be if X had a value of zero.

The goal of regression analysis is to find a line that best fits or explains the 
data. The population regression line is written as follows:

Yi = β0 + β1Xi + εi

In this equation, Yi is the dependent variable, Xi is the independent variable, 
β0 is the intercept, β1 is the slope, and εi is an error term.

A sample regression line, estimated from the data, is written as follows:

Here,  is the estimated value of Yi,  is the estimated value of β0, and  is 
the estimated value of β1 and is the independent variable.

The sample regression line shows the estimated relationship between Y 
and X; you can use this relationship to determine how much Y changes due 
to a given change in X. You can also use it to forecast future values of Y based 
on assumed values of X.



21 Chapter 1: The Art and Science of Business Statistics

After estimating the sample regression line, the results are subjected to a 
series of tests to determine whether the equation is valid. If the equation isn’t 
valid, you reject the results and try a new model.

Multiple regression analysis
With multiple regression analysis, you estimate the relationship between a 
dependent variable (Y) and two or more independent variables (X1, X2, and  
so on).

For example, suppose that Y represents annual salaries (in thousands of  
dollars) at a corporation. A researcher has reason to believe that the salaries 
at this corporation depend mainly on the number of years of job experience  
and the number of years of graduate education for each employee. The 
researcher may test this idea by running a regression in which salary is the 
dependent variable (Y) and job experience and graduate education are the 
independent variables (X1 and X2, respectively.) The population regression 
equation in this case would be written as

The sample regression line would be

Using multiple regression analysis introduces several additional complications 
compared with simple regression analysis, but you can use it for a much 
wider range of applications than simple regression analysis.

Forecasting techniques
You can forecast the future values of a variable, using one of several types of 
models. One approach to forecasting is time series models. A time series is a 
set of data that consists of the values of a single variable observed at different 
points in time. For example, the daily price of Microsoft stock taken from the 
past ten years is a time series.

Time series forecasting involves using past values of a variable to forecast 
future values. 
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Some forecasting techniques include:

 ✓ Trend models

 ✓ Moving average models

 ✓ Exponential moving average models

A trend model is used to estimate the value of a variable as it evolves over 
time. For example, suppose annual data is used to estimate a trend model 
that explains the behavior of gasoline prices over time. The price is currently 
$3.50 per gallon, and you determine that on average, gasoline prices rise by 
$0.10 per year. A simple trend model that expresses this information would 
be written as:

In this equation, Yt represents the estimated gas price at time t, where  
t represents a specific year. (t = 0 represents the present time.) The term 
3.50 indicates the current price of gasoline; 0.10t indicates that the price of 
gasoline rises by $0.10 per year. The term  is known as an “error term”; this 
reflects random fluctuations in the price of gasoline over time. 

A moving average model shows that the value of a variable evolves over time 
based on its most recent values. For example, if the price of gasoline over the 
past three years was:

2010 $3.25

2011 $3.32

2012 $3.42

A three-period moving average model would produce an estimated value of 
($3.25 + $3.32 + $3.42) / 3 = $3.33 for 2013.

An exponential weighted average model is closely related to a moving average 
model. The difference is that with an exponential weighted average, older 
observations aren’t given the same “weight” as newer observations. The  
calculation of an exponential weighted average is more complex, but may 
give more realistic results.

The appropriate choice of model depends on the properties of the particular 
time series being used.



Chapter 2

Pictures Tell the Story: Graphical 
Representations of Data

In This Chapter
▶ Describing the properties of data with a frequency distribution
▶ Illustrating frequency distributions with histograms
▶ Tracking trends with line graphs, pie charts, and scatter diagrams

M 
uch of statistical analysis is based on numerical techniques, such as 
confidence intervals, hypothesis testing, regression analysis, and so 

on. (These topics are covered in Chapters 11, 12, and 15, respectively.)

In many cases, these techniques are based on assumptions about the data 
being used. One way to determine if the data conform to these assumptions 
is to analyze a graph of the data, as a graph can provide many insights into 
the properties of a data set. For example, a graph may be used to show:

 ✓ How frequently a value occurs in a data set

 ✓ The average value of the elements in a data set

 ✓ Whether the elements in a data set are increasing or decreasing over time

 ✓ Whether the elements in two different data sets are related to each other

Graphs are particularly useful for non-numerical data, such as colors,  
flavors, brand names, and more, where numerical measures are difficult or 
impossible to compute.

This chapter explains how to organize data in a convenient form so you can 
easily analyze it. I introduce charts and graphs — from histograms to line 
graphs to pie charts and scatter plots — that can help you visualize the most 
important properties of a data set.
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Analyzing the Distribution of  
Data by Class or Category

To graph quantitative (numerical) data, you start by organizing the data into 
classes (also known as intervals). For example, suppose the government is 
conducting a study that measures the salary ranges for employees in the  
software industry in the United States. Here’s one possible set of classes:

$0 to $24,999 per year

$25,000 to $49,999 per year

$50,000 to $74,999 per year

$75,000 to $99,999 per year

$100,000 and more per year

By counting the number of employees that fall into each class, you can easily 
see how salaries are distributed in the software industry. If you make the 
data into a graph, you can then easily compare this information with salaries 
in other industries.

Qualitative (non-numerical) data may be organized into categories. For 
example, suppose that a marketing firm is studying the spending habits of 
consumers and wants to determine the most popular colors for a new line of 
watches. In this case, the colors are relevant categories.

What type of graph you use for analyzing a set of data depends on the type of 
data (quantitative or qualitative) and the type of analysis you are performing. 
The following sections introduce several important types of graphs. 

I also introduce the concept of a frequency distribution. This is a list of classes 
and the number of elements that belong to each class (known as frequencies). 
I cover the steps required to construct a frequency distribution, and I show 
two related types of distribution: relative frequency distribution and  
cumulative frequency distribution.

This section covers several widely used types of graphs, including histograms, 
pie charts, line graphs, and scatter plots. Histograms represent frequency 
distributions as a series of bars. Pie charts show what proportion of the  
elements of a data set belongs to various categories. A line graph shows how 
the value of a variable changes over time. Scatter plots are used to show the 
relationship between two variables.
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Frequency distributions  
for quantitative data
Quantitative data consists of numerical values, such as prices, weights,  
distances, and so on. 

To graphically analyze quantitative data, you first have to organize them into 
a frequency distribution — a table that shows the number of observations that 
fall into each class within the data set.

For example, suppose that the following values represent the price of  
gasoline (dollars per gallon) at 20 randomly selected gas stations:

$4.42  $4.34

$4.17  $3.73

$3.92  $3.56

$4.49  $3.65

$3.91  $3.58

$4.46  $4.12

$4.27  $4.21

$3.92  $3.85

$3.57  $4.10

$4.10  $3.63

Now suppose you organize the data into four classes, as follows:

$3.50 to $3.74

$3.75 to $3.99

$4.00 to $4.24

$4.25 to $4.49

Table 2-1 shows the frequency distribution for these.
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Table 2-1 Frequency Distribution of Prices for 20 Gas Stations
Gas Prices ($/Gallon) Number of Gas Stations
$3.50–$3.74 6
$3.75–$3.99 4
$4.00–$4.24 5
$4.25–$4.49 5

Table 2-1 shows that the distribution of gas prices among these classes is 
very nearly equal. Seeing how the prices are distributed with a frequency  
distribution is much easier than inspecting the raw (original) data, which in 
this case is a list of 20 gas prices.

When you’re constructing a frequency distribution, one of the most important 
considerations is the width of the classes. The class width equals the difference 
between the largest value that may be included in the class and the smallest. In 
Table 2-1, the class widths are $0.25. Usually, the class widths will be equal.

Deciding how many classes to use depends on how much data you have and 
how detailed you need the results to be. For example, if the class width is too 
large, it can disguise the distribution of values within each class. If the class 
width is too small, then several classes may contain no elements or very few 
elements, which makes analyzing the results more cumbersome.

As a rule of thumb, the optimal number of classes in a frequency distribution 
is between 5 and 15.

Figuring the class width
In the gas station example, each class has a width of $0.25. In general, you 
can determine the class width by subtracting the smallest value from the 
largest value and dividing by the total number of desired classes:

Referring to the raw data (the list of 20 gas prices), you see that the largest 
price in the sample is $4.49 and the smallest is $3.56. To construct a frequency 
distribution with four classes, the width of each interval should be
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So the class width is equal to approximately $0.25. Although the class width 
could be kept at $0.2325, using a width of $0.25 is intuitively easier to follow 
(since prices can’t be expressed in quarters of a cent).

 When you construct a frequency distribution, remember these key points:

 ✓ The classes must not overlap. For example, if the frequency distribution 
refers to gasoline prices, it would be incorrect to have a class for $1.00 
to $2.00 and another class for $2.00 to $3.00, because both contain $2.00. 
It would be unclear which class contains prices of $2.00.

 ✓ The classes must cover all elements in the data set being analyzed.

 ✓ Ideally, the classes should have equal widths; otherwise, analyzing the 
results is much more difficult.

 ✓ Class widths should ideally be “round” numbers, such as $0.50, $1.00, 
$10.00, and so on, compared with numbers such as $0.43, $1.87, and 
$2.15. These numbers are more difficult to grasp intuitively. For the gas 
station example, the widths are $0.25, and this is preferable to $0.2325, 
because $0.2325 isn’t a round number.

Observing relative frequency distributions
A frequency distribution shows the number of elements in a data set that 
belong to each class. In a relative frequency distribution, the value assigned 
to each class is the proportion of the total data set that belongs in the class. 
For example, suppose that a frequency distribution is based on a sample of 
200 supermarkets. It turns out that 50 of these supermarkets charge a price 
between $8.00 and $8.99 for a pound of coffee. In a relative frequency distri-
bution, the number assigned to this class would be 0.25 (50/200). In other 
words, that’s 25 percent of the total.

Here’s a handy formula for calculating the relative frequency of a class:

Class frequency refers to the number of observations in each class; n repre-
sents the total number of observations in the entire data set. For the super-
market example in this section, the total number of observations is 200.

The relative frequency may be expressed as a proportion (fraction) of the 
total or as a percentage of the total. See Table 2-2, which gives both types of 
relative frequency based on the gas station data in Table 2-1. 
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Table 2-2 Relative Frequencies for Gas Station Prices
Gas Prices ($/
Gallon)

Number of Gas 
Stations

Relative 
Frequency  
(fraction)

Relative 
Frequency  
(percent)

$3.50–$3.74 6 6/20 = 0.30 30%
$3.75–$3.99 4 4/20 = 0.20 20%
$4.00–$4.24 5 5/20 = 0.25 25%
$4.25–$4.49 5 5/20 = 0.25 25%

With a sample size of 20 gas stations, the relative frequency of each class 
equals the actual number of gas stations divided by 20. The result is then 
expressed as either a fraction or a percentage. For example, you calculate the 
relative frequency of prices between $3.50 and $3.74 as 6/20 to get 0.30 (30 
percent). Similarly, the relative frequency of prices between $3.75 and $3.99 
equals 4/20 = 0.20 = 20 percent.

 One of the advantages of using a relative frequency distribution is that you 
can compare data sets that don’t necessarily contain an equal number of 
observations. For example, suppose that a researcher is interested in compar-
ing the distribution of gas prices in New York and Connecticut. Because 
New York has a much larger population, it also has many more gas stations. 
The researcher decides to choose 1 percent of the gas stations in New York 
and 1 percent of the gas stations in Connecticut for the sample. This turns out 
to be 800 in New York and 200 in Connecticut. The researcher puts together a  
frequency distribution as shown in Table 2-3.

Table 2-3 Frequency Distribution of Gas Prices  
 in New York and Connecticut
Price New York Gas Stations Connecticut Gas Stations
$3.00–$3.49 210 48
$3.50–$3.99 420 96
$4.00–$4.49 170 56

Based on this frequency distribution, it’s awkward to compare the distribution 
of prices in the two states. By converting this data into a relative frequency 
distribution, the comparison is greatly simplified, as seen in Table 2-4.
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Table 2-4 Relative Frequency Distribution of Gas Prices  
 in New York and Connecticut
Price New 

York Gas 
Stations

Relative 
Frequency

Connecticut 
Gas 
Stations

Relative 
Frequency

$3.00–$3.49 210 210/800 = 
0.2625

48 48/200 = 
0.2400

$3.50–$3.99 420 420/800 = 
0.5250

96 96/200 = 
0.4800

$4.00–$4.49 170 170/800 = 
0.2125

56 56/200 = 
0.2800

The results show that the distribution of gas prices in the two states is nearly 
identical. Roughly 25 percent of the gas stations in each state charge a price 
between $3.00 and $3.49; about 50 percent charge a price between $3.50 and 
$3.99; and about 25 percent charge a price between $4.00 and $4.49.

Frequency distribution  
for qualitative values
In this section, I use a qualitative data set to illustrate frequency distributions.

Suppose that a data set consists of qualitative (non-numerical) values. In this 
example, consumers were asked to identify their favorite color on a survey. 
The 20 responses are listed here.

blue blue blue black
black black black black
white blue white blue
red red red red
silver silver black white

In this case, the categories are colors. The frequency distribution of these 
data is:

Color Number of Reponses
Black 6
Blue 5
Red 4
Silver 2
White 3
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Table 2-5 shows the relative frequency distribution.

Table 2-5 Relative Frequency Distribution of Favorite Colors
Color Number of 

Responses
Relative 
Frequency  
(fraction)

Relative 
Frequency  
(percent)

Black 6 6/20 = 0.30 30%
Blue 5 5/20 = 0.25 25%
Red 4 4/20 = 0.20 20%
Silver 2 2/20 = 0.10 10%
White 3 3/20 = 0.15 15%

You can easily see from the table that the most popular choice is black, and 
the least popular is silver.

Cumulative frequency distributions
Cumulative frequency refers to the total frequency of a given class and all 
prior classes. 

For example, Table 2-6 lists the cumulative frequencies for the gas station 
data from the earlier section “Frequency distributions for quantitative data.”

Table 2-6 Cumulative Frequency of Prices at 20 Gas Stations
Gas Prices  
($/Gallon)

Number of Gas 
Stations

Cumulative 
Frequency

Cumulative 
Frequency  
(percent)

$3.50–$3.74 6 6 30%
$3.75–$3.99 4 6 + 4 = 10 50%
$4.00–$4.24 5 6 + 4 + 5 = 15 75%
$4.25–$4.49 5 6 + 4 + 5 + 5 = 20 100%

To figure out the cumulative frequency of the $3.75 to $3.99 class, you add 
its class frequency (4) to the frequency of the previous class ($3.50 to $3.74, 
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which is 6), so 6+4 = 10. This result shows you that ten gas stations’ prices 
are between $3.50 and $3.99. Because 20 gas stations were used in the 
sample, the percentage of all gas stations with prices between $3.50 and $3.99 
is 10/20 or 50 percent of the total.

Histograms: Getting a Picture  
of Frequency Distributions

You can illustrate a frequency distribution, a relative frequency distribution, 
or a cumulative frequency with a special type of graph known as a histogram. 
(See the previous section, “Analyzing the Distribution of Data by Class or 
Category.”) With histograms, you list classes or categories on the horizontal 
axis and frequencies on the vertical axis. A bar represents each class or  
category.

A histogram’s job is to provide a visual of the distribution of elements in 
a data set. The histogram can show which values in a data set occur most 
frequently, the smallest and largest values in the data set, how “spread out” 
these values are, and so on.

Figure 2-1 shows a histogram of the frequency distribution for the gas station 
prices from the previous section.

 

Figure 2-1: 
Frequency 

distribution  
of gas 

prices.
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Figure 2-2 shows the relative frequency distribution. 

 

Figure 2-2: 
Relative 

frequency 
distribution 
of gas sta-
tion prices.

 

Figure 2-3 shows the cumulative frequency distribution. 

 

Figure 2-3: 
Cumulative 
frequency 

distribution.
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As another example, two restaurants, Pegasus and Orion, each asked  
40 customers to estimate how much time they waited to receive their 
entrees. Figure 2-4 shows the results for the Pegasus survey, and Figure 2-5 
shows the results for the Orion survey.

 

Figure 2-4: 
Histogram 
of waiting 

times at the 
Pegasus 

restaurant.
 

 

Figure 2-5: 
Histogram 
of waiting 

times at the 
Orion  

restaurant.
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As you can see, the most common waiting time at Pegasus was 15 to 20 minutes, 
and at Orion, 25 to 30 minutes. The histograms also show that the waiting 
times are more spread out at Orion — in other words, the actual waiting time 
is more uncertain at Orion than at Pegasus.

Checking Out Other Useful Graphs
In addition to histograms, several other types of graphs can illustrate the 
properties of a data set. This section introduces you to some of the more 
common types of graphs you’re likely to encounter and use.

Line graphs: Showing the  
values of a data series
A line graph is useful for showing how the value of a variable changes over 
time. With a line graph, the vertical axis represents the value of the variable, 
and the horizontal axis represents time. Each point on the graph represents 
the value of the variable at a single point in time, and a line connects the 
points. This line shows any trends in the data, such as whether the variable 
increases or decreases over time.

The following shows the price of gold (dollars per ounce) during the first six 
months of 2012:

Month Gold Price ($/Ounce)
January 2012 $1,652.42
February 2012 $1,723.33
March 2012 $1,676.30
April 2012 $1,646.77
May 2012 $1,567.08
June 2012 $1,602.27

The line chart in Figure 2-6 illustrates how the price of gold changed during 
this time period, based on the data shown in the table.
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Figure 2-6: 
Line graph 

showing 
how the 
price of 

gold fluctu-
ated over 

six months’ 
time.

 

Using a line chart to detect patterns in the data is much easier than looking 
at the original data.

Pie charts: Showing the  
composition of a data set
A pie chart is a circle graph that’s divided into slices to represent the  
distribution of values in a data set. The area of each slice is proportional to 
the number of values in a given class or category.

For example, suppose a bank has 100 branches throughout the country; the 
following is the geographical distribution of these branches:

Branch Location Number of Branches
Northeast 44
Northwest 32
Southeast 15
Southwest 9
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The pie chart in Figure 2-7 illustrates these results.

 

Figure 2-7: 
Branch 

location 
results 

shown in a 
pie chart.

 

The area of each slice in the pie chart indicates the proportional number of 
branches in each region. With this chart, you can easily see that the majority 
of the branches are in the northeast, with the fewest in the southwest.

Scatter plots: Showing the relationship 
between two variables
A scatter plot (also known as a scatter diagram) shows the relationship 
between two quantitative (numerical) variables. These variables may be  
positively related, negatively related, or unrelated:

 ✓ Positively related variables indicate that

  When one variable increases, the other variable tends to increase.

  When one variable decreases, the other variable tends to decrease.

 ✓ Negatively related variables indicate that

  When one variable increases or decreases, the other variable 
tends to do the opposite.
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 ✓ Unrelated variables indicate that

  No relationship is seen between the changes in the two variables.

The scatter diagram in Figure 2-8 shows the relationship between the 
monthly returns to Microsoft stock and the Standard & Poor’s (S&P) 500 
Index from 2008 to 2012:

 

Figure 2-8: 
Scatter 

diagram 
showing 

relationship 
of monthly 

returns.
 

Each point on the graph represents the return to Microsoft stock and the 
return to the S&P 500 Index during a single month. The general direction 
of these points is from the lower-left corner of the graph to the upper-right 
corner, indicating that the two variables have a positive relationship.

The graph contains a trend line, which is a straight line designed to come as 
close as possible to all the points in the diagram. If two variables are positively 
related, the trend line has a positive slope; similarly, if two variables are 
negatively related, the trend line has a negative slope. If two variables are 
unrelated to each other, the trend line has a zero slope (that is, the trend line 
will be flat).

In the case of Microsoft and the S&P 500 Index, the equation of the trend line is

y = –0.0028 + 0.917x
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In this equation, –0.0028 is the intercept (where the trend line crosses the  
vertical axis) and the slope is 0.917 (how much y changes due to a change  
in x).

Because the slope of the trend line is positive (0.917), the relationship 
between the returns to Microsoft stock and the S&P 500 Index is positive. 
The value of the slope also shows that each 1 percent increase in the returns 
to the S&P 500 Index increases the return to Microsoft by 0.917 percent, and 
that each 1 percent decrease in the returns to the S&P 500 Index decreases 
the return to Microsoft by 0.917 percent.

Even more types of graphs
In addition to the graphs covered in this chapter —  
histograms, line graphs, pie charts, and scatter 
plots — there are many other types of graphs 
that you can use to analyze statistical data. 
Many of these have interesting names, such 
as stemplots, box-and-whisker diagrams, and 

ogives. These types may be used as alternatives 
to numerical methods to identify the distribution 
of elements within a data set, the relationship 
between the mean and the median of a data set, 
and several other factors.



Chapter 3

Finding a Happy Medium: 
Identifying the Center  

of a Data Set
In This Chapter
▶ Computing the mean, median, and mode of a data set
▶ Noting the specific characteristics of the mean, median, and mode

T 
he center of a data set (sample or population) provides useful information 
in many business applications. For example, it may be extremely  

important for a marketing firm to determine the average age of the customers 
who buy a specific product. Understanding the average household income of 
a company’s customers would also be extremely useful in determining which 
types of new products to introduce. The portfolio manager at a pension 
fund is extremely interested in knowing the average rate of return of various 
stocks that he may be thinking about buying.

This chapter focuses on the techniques you use to find the center of a data 
set. There are several different ways to define the center: the average value, 
the middle value, the most frequently occurring value, and so on. Three of 
the most important measures of the center, formally known as measures of 
central tendency, are the mean, median, and mode.

The mean is the most commonly used measure of the center; it has the 
advantage of being easy to compute and interpret. In statistics, the word 
mean is used interchangeably with average.

The median and mode are mainly used in situations where the mean is likely 
to give misleading results. This can happen if the data set contains any 
extremely large or small values, known as outliers. 

 An outlier is a value that’s significantly different from the other elements in  
a data set. Outliers may have a dramatic impact on the accuracy of your  
calculations.
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The median is the middle value of a data set (just like a median divides a 
highway into two equal halves). The mode is the most frequently occurring 
value in a data set. Each of these measures has its own unique set of  
advantages and disadvantages.

Looking at Methods for Finding the Mean
You can calculate the mean of a data set in several ways; the appropriate 
choice depends on the type of data and the application. This section explains 
how to find the three most common types of mean.

Arithmetic mean
The arithmetic mean is what most people think of when they hear the word 
mean. This type of mean is the easiest to calculate; it’s the sum of the  
elements in a data set divided by the number of elements.

You use different formulas for computing the arithmetic mean for a population 
and a sample. A population is a collection of data that you’re interested in 
studying; a sample is a selection chosen from a population. For example, if a 
government is interested in the distribution of household incomes, the  
population of interest would be the incomes of every household. A sample 
would be a set of incomes for households randomly chosen from the  
population.

Calculating the sample arithmetic mean
The formula for finding the sample arithmetic mean is

The key terms in this formula are:

 ✓  (pronounced “X bar”) = the sample mean

 ✓ n = the number of elements in the sample

 ✓ i = an index, which assigns a number to each sample element, ranging 
from 1 to n

 ✓ Xi = a single element in the sample

 ✓ Σ = the uppercase Greek letter sigma, known as the summation operator, 
which indicates that a sum is being computed
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The summation operator is shorthand notation for adding a set of numbers. 
For example, if a data set contains five elements, the summation operator 
tells you to perform the following calculations:

Each of the Xs in this formula is indexed by a number ranging from 1 to n, 
where n is the size of the data set. In this example, n is 5.

Suppose an investor wants to compute the arithmetic mean return of the 
stock of Omega Airlines, Inc. He or she takes a sample of annual returns — 
the period from 2008 to 2012.

Year Omega Airlines Annual Return (percent)
2008 2
2009 –1
2010 3
2011 5
2012 1

To find the arithmetic mean, follow these steps:

 1. Assign an index to each return in the sample.

X1 = 2, X2 = –1, X3 = 3, X4 = 5, X5 = 1

Here, X1 represents the return in 2008; X2 is the return in 2009, and so on.

 2. Compute the sum of the returns:

 3. Divide the sum of the returns by the number of returns in the sample:

This result shows that the average return of this stock is 2 percent per year.
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Calculating the population arithmetic mean
When you calculate the arithmetic mean of a population, the calculation is 
the same as for arithmetic mean of a sample, but the notation is slightly  
different. Here’s the formula for computing the arithmetic mean of a population:

The new term in this formula is μ, the lowercase Greek letter mu, which 
replaces  from the sample arithmetic mean formula in the previous section. 
The μ represents the mean of a population.

 In statistics, it’s common to use Greek letters to represent population measures 
and Latin letters (that is, the alphabet that you use every day) to represent 
sample measures.

Geometric mean
The main difference between the arithmetic and geometric means is that the 
arithmetic mean is based on sums, while the geometric mean is based on 
products.

For the Omega Airlines example in the previous section, the arithmetic mean 
doesn’t reflect the fact that the size of an investment in this stock grows over 
time and so it underestimates the true rate of return during the five-year 
sample period. This underestimation is one of the major drawbacks of the 
arithmetic mean. Based on the arithmetic mean return of 2 percent per year, 
the investor would have earned a cumulative return of 10 percent: 2 + 2 + 2 + 
2 + 2 = 10 percent from 2008 to 2012.

In fact, the cumulative return was approximately 10.3 percent. To illustrate 
this return, assume that an investor started with $100,000 at the beginning of 
2008. Table 3-1 shows the value of this investment from 2008 to 2012.

Table 3-1 Computing the Return to Omega Airlines Stock
Year Omega Airlines Annual 

Return (percent)
Starting 
Balance

Ending Balance

2008  
2

$100,000.00 $100,000.00(1.02) = 
$102,000.00

2009  
–1

$102,000.00 $102,000.00(0.99) = 
$100,980.00
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Year Omega Airlines Annual 
Return (percent)

Starting 
Balance

Ending Balance

2010  
3

$100,980.00 $100,980.00(1.03) = 
$104,009.40

2011  
5

$104,009.40 $104,009.40(1.05) = 
$109,209.87

2012  1 $109,209.87 $109,209.87(1.01) = 
$110,301.97

In each year, the starting balance is multiplied by the gross return (one plus 
the rate of return) during the year to get the ending balance. Each year’s 
starting balance equals the previous year’s ending balance.

The ending balance in 2012 equals $110,301.97. The cumulative rate of return 
during this period is the ratio of the ending balance to the starting balance 
minus one:

The cumulative return over period 2008–2012 is 10.30197 percent, more than 
the 10 percent implied by the arithmetic mean. In this case, the geometric 
mean provides a more accurate result than the arithmetic mean because the 
geometric mean takes into account the increasing size of the investment, 
while the arithmetic mean doesn’t.

Because the geometric mean is based on products, for a sample or a  
population, you multiply the gross returns for each year to get the cumulative 
five-year return:

The returns are multiplied in order to indicate that each year’s return is 
applied to the cumulative value of the investment, not the original value.
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Because this sample has five returns, the next step is to raise the final result 
1.1030197 to the one-fifth power:

Raising a number to the one-fifth power is also known as taking the fifth root 
of the number. This corresponds to dividing by five when computing the 
arithmetic mean.

 You can determine any exponent on a calculator with the exponentiation key; 
for most calculators, this key appears as YX or XY.

Subtracting 1 from the example’s result gives you 1.0198039 – 1 = 0.0198039 =  
1.98039 percent per year. If the investor earns this return each year for five 
years, the five-year return will be computed as follows. First, the annual 
return plus one is multiplied by itself five times.

Subtracting one gives the cumulative five year return:

(Note that there are slight differences in the results due to rounding.)

 You use this process for calculating either the geometric mean of a sample or 
the geometric mean of a population.

Weighted mean
Sometimes a data set contains a large number of repeated values. In these  
situations, you can simplify the process of computing the mean by using 
weights — the frequencies of a value in a sample or a population. You can 
compute both the arithmetic mean and geometric mean as weighted averages.

Calculating the weighted arithmetic mean
The formula for computing a weighted arithmetic mean for a sample or a 
population is
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Here, wi represents the weight associated with element Xi; this weight equals 
the number of times that the element appears in the data set.

The numerator (the top half of the formula) tells you to multiply each element 
in the data set by its weight and then add the results together, as shown 
here:

The denominator (the bottom half of the formula) tells you to add the weights 
together:

You find the weighted arithmetic mean by dividing the numerator by the 
denominator.

As an example, suppose that a marketing firm conducts a survey of 1,000 
households to determine the average number of TVs each household owns. 
The data show a large number of households with two or three TVs and a 
smaller number with one or four. Every household in the sample has at least 
one TV and no household has more than four. Here’s the sample data for the 
survey:

Number of TVs per 
Household

Number of 
Households

1 73
2 378
3 459
4 90

Because many of the values in this data set are repeated multiple times, you 
can easily compute the sample mean as a weighted mean. Doing so is quicker 
than summing each value in the data set and dividing by the sample size.

Follow these steps to calculate the weighted arithmetic mean:

 1. Assign a weight to each value in the data set:

X1 = 1, w1 = 73

X2 = 2, w2 = 378

X3 = 3, w3 = 459

X4 = 4, w4 = 90
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 2. Compute the numerator of the weighted mean formula.

Multiply each sample by its weight and then add the products together:

 3. Compute the denominator of the weighted mean formula by adding 
the weights together:

 4. Divide the numerator by the denominator:

The mean number of TVs per household in this sample is 2.566.

Calculating the weighted geometric mean
You can calculate the weighted geometric mean in the same way for both 
samples and populations. The formula is:

Here’s the breakdown of this equation:

 ✓ Π = the uppercase Greek letter pi used to indicate that a product is 
being computed

 ✓ Xi = a single element in the sample or population

 ✓ wi = the weight of element Xi

 ✓ = the sum of the weights w1, w2, …, wn
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You apply an exponent to each element in the data set that equals the weight 
of the element. You then multiply these values together and raise to a power 
equal to one divided by the sum of the weights.

 An exponent is the superscript in an expression such as 34; in this case, the 
base is 3 and the exponent is 4. This is shorthand for multiplying 3 by itself 
four times: 3 × 3 × 3 × 3 = 81. Note that in many formulas and Microsoft Excel, 
the asterisk (*) represents multiplication. In Excel the carat (^) represents 
exponentiation.

As an example, a marketing firm conducts a survey of 20 households to  
determine the average number of cellphones each household owns. Here’s 
the sample data from this survey:

Number of Cell Phones 
Per Household

Number of Households

1 2
2 5
3 6
4 4
5 3

To figure out the weighted geometric mean, follow these steps:

 1. Compute the value of each Xi with an exponent equal to its weight wi:

X1
w

1 = 12 = 1

X2
w

2 = 25 = 32

X3
w

3 = 36 = 729

X4
w

4 = 44 = 256

X5
w

5 = 53 = 125

 2. Multiply these results together:

 3. Divide 1 by the sum of the weights:



48 Part I: Getting Started with Business Statistics 

 4. Combine these results to find the weighted geometric mean:

So on average, each household has approximately 2.78 cellphones.

Getting to the Middle of Things:  
The Median of a Data Set

The median is a value that divides a sample or a population in half. In other 
words:

 ✓ Half of the elements in the data set are below the median.

 ✓ Half of the elements in the data set are above the median.

For example, the sample of returns of Omega Airlines stock from 2008 to 2012 
is shown here:

Year Omega Airlines Annual Return (percent)
2008 2
2009 –1
2010 3
2011 5
2012 1

You can compute the median of this sample, using the following steps:

 1. Sort the elements from the smallest to the largest.

Original data:

2, –1, 3, 5, 1

Sorted data:

–1, 1, 2, 3, 5

 2. Identify the middle observation. 

Because the sample contains five elements, the median is the third largest 
element (ensuring that two elements are below the median and two are 
above). The resulting value of the median is 2. 

–1, 1, 2, 3, 5
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Note: If the sample contains an even number of elements, then no  
element exists in the middle of the data. Instead, you calculate the 
median as the average of the middle two elements.

Here’s another example. This list is a sample of the returns onto Epsilon 
Railways stock from 2007 to 2012:

Year Epsilon Railways Annual Return (percent)
2007 0
2008 2
2009 3
2010 6
2011 1
2012 4

 1. Sort the elements from smallest to largest.

Original data:

0, 2, 3, 6, 1, 4

Sorted data:

0, 1, 2, 3, 4, 6

 2. Identify the middle observation.

In this example, there are six sample elements. Because 6 is an even 
number, you compute the median as the average of the third and fourth 
elements: 

0, 1, 2, 3, 4, 6

(2 + 3)/2 = 2.5

Note that three sample elements are below 2.5, and three elements are 
above 2.5.

 The procedure for computing the median of a sample is the same as for  
computing the median of a population.

Comparing the Mean and Median
In some data sets, the mean and median may equal each other. When this 
occurs, the data set is said to be symmetrical about the mean, meaning that 
values below the mean balance the values above the mean. A data set may 
also be negatively skewed, indicating the presence of extreme values below 
the mean. Likewise, a data set may be positively skewed, indicating the  
presence of extreme values above the mean.
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If a data set is skewed, the mean and median won’t equal each other; instead, 
the relationship between them will determine the direction of the skew. I 
explore the relationship of the mean and median as well as the advantages 
and disadvantages of each measure in the following sections.

Determining the relationship  
between mean and median
The relationship between the mean and median of a data set determines 
whether the data set is symmetrical about the mean, negatively skewed, or 
positively skewed.

Symmetrical
A data set is symmetrical if the mean equals the median. Mathematically, this 
is expressed as

mean = median

The histogram in Figure 3-1 shows the frequency distribution for the daily 
returns of a stock with the following mean and median:

mean = 0.00 percent

median = 0.00 percent

 

Figure 3-1: 
Symmetrical 

sample 
data.

 
 Illustration by Wiley, Composition Services Graphics
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The histogram shows that the left and right tails balance each other so that 
positive and negative values that are equal distances from the center are 
equally likely. (The left tail represents the smallest observations and the right 
tail represents the largest observations in the data set.) The left-hand side of 
this distribution is a mirror image of the right-hand side, showing that this 
distribution is symmetrical about the mean.

Negatively skewed
A data set is negatively skewed if the mean is less than the median. 
Mathematically, you can express this relationship as

mean < median

The histogram in Figure 3-2 shows the frequency distribution for the daily 
returns to a stock with the following mean and median:

mean = –0.95 percent

median = –0.75 percent

 

Figure 3-2: 
Negatively 

skewed 
sample 

data.
 

 Illustration by Wiley, Composition Services Graphics

The histogram shows a long left tail, which results from extreme negative 
values in the data set.
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Positively skewed
A data set is positively skewed if the mean is greater than the median. 
Mathematically, this relationship looks like this:

mean > median

The histogram in Figure 3-3 shows the frequency distribution for the daily 
returns on a stock with the following mean and median:

mean = 1.55 percent

median = 0.70 percent

 

Figure 3-3: 
Positively 

skewed 
sample 

data.
 

 Illustration by Wiley, Composition Services Graphics

The graph shows a long right tail, which results from extreme positive values 
in the data set.

Acknowledging the relative  
advantages and disadvantages  
of the mean and median
The mean is the most commonly used measure of the center of a data set. 
Under some conditions, though, the median (or even the mode) may be more 
representative of the center of the data set.



53 Chapter 3: Finding a Happy Medium: Identifying the Center of a Data Set

If a data set is symmetrical, the mean and the median are equal, so both are 
equally useful measures. When a data set is skewed, the median is likely to 
be a more representative measure of the center of the data than the mean 
because the median isn’t as affected by extreme outcomes as much as the 
mean.

Discovering the Mode: The Most 
Frequently Repeated Element

The mode is the most frequently occurring value in a sample or a population. 
For example, suppose a bank chooses a sample of 20 of its branches in New 
York City, and for each branch, the number of ATMs in the lobby is recorded 
as follows:

Three branches have two ATMs.

Six branches have three ATMs.

Eight branches have four ATMs.

Three branches have five ATMs.

Because most branches have four ATMs, 4 is the mode in this sample.

 One of the most unusual features of the mode is that it isn’t necessarily 
unique; a data set can have two or more modes. It’s also possible that a data 
set has no mode — that is, no values are repeated.

For example, suppose that the same bank chooses a sample of 20 of its 
branches in Connecticut. For each branch, the number of ATMs in the lobby 
is recorded. The results are given as follows:

Three branches have two ATMs.

Eight branches have three ATMs.

Eight branches have four ATMs.

One branch has five ATMs.

In this sample, more branches have three or four ATMs than any other 
number. Because the number of branches with three ATMs equals the 
number of banks with four ATMs, the mode of this sample is both 3 and 4.
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 The mode is most useful when a data set contains qualitative data (that is, 
non-numerical data). This type of data can include colors, flavors, brand 
names, and so on. With qualitative data, calculating a mean or a median is 
impossible, but you can still find the mode. With quantitative (numerical) 
data, the mean and the median are typically more useful than the mode.

As an example, suppose that a marketing firm conducts a survey to determine 
which color consumers would likely choose for a new car. The survey 
responses are as follows:

blue red blue
black blue black
blue blue black
blue black blue
white silver blue

Because this data is qualitative, calculating the mean or the median is  
impossible. But you can determine the mode by tabulating the frequency of 
the 15 responses. Because blue appears in the survey eight times, black, four 
times, white, red, and silver, one each, the mode is blue. Consumers in this 
survey prefer blue to other colors.

The distribution of colors is shown in Figure 3-4. In this example, the histogram 
shows colors on the horizontal axis and the corresponding frequencies on 
the vertical axis:

 

Figure 3-4: 
Distribution 

of colors 
chosen by 

consumers.
 

 Illustration by Wiley, Composition Services Graphics

Because blue occurs most frequently in this sample, it’s the sample’s mode.



Chapter 4

Searching High and Low: 
Measuring Variation in a Data Set

In This Chapter
▶ Computing variance and standard deviation
▶ Finding the relative position of data: percentiles and quartiles
▶ Measuring relative variation: the coefficient of variation

O 
ne of the most important properties of a data set (a sample or population) 
is how “spread out” the data are from the center. (Techniques for  

measuring the center of a data set are covered in Chapter 3.) You can use 
several numerical measures, known as measures of dispersion, to calculate 
the spread of a data set.

This chapter covers the techniques used to compute the variance and  
standard deviation of a sample and a population. (Samples and populations 
are defined in Chapter 1.) Techniques for determining the relative position of 
an element within a sample or a population are also explained in detail;  
these include percentiles and quartiles. Finally, the coefficient of variation is 
introduced as a measure of relative variation; this enables a direct comparison 
of the properties of two samples or two populations.

Thanks to standard deviation and the mean (covered in Chapter 3), you can 
calculate relative variation, which has many handy applications.

Determining Variance and  
Standard Deviation

Variance and standard deviation are the two most widely used measures of 
dispersion in statistics. They’re both based on the average squared distance 
between the elements of a data set and the mean. 
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Standard deviation and variance are usually better than some other measures 
of dispersion, such as the range. The range is the difference between the  
largest and smallest elements in a data set. Interesting, but not that great. 
The range suffers from the drawback that it’s only based on two values, so it 
doesn’t measure the spread among the remaining values.

The variance indicates the size of the average squared difference between 
the elements of a data set and the mean of the data set. And here’s what you 
need to know: A large variance shows a substantial amount of spread among 
the elements of a data set.

Variance is often used as a measure of uncertainty or risk in business  
applications. For example, an investor may use variance to determine the 
degree of risk associated with owning a share of stock. If returns of the stock 
fluctuate significantly over time, it’s a risky investment. Variance provides a 
method for assigning a numerical value to this fluctuation. The greater the 
stock’s variance, the riskier it is.

Standard deviation is the square root of the variance. It’s more commonly 
used than variance as a measure of risk because the variance is expressed in 
squared units. For example, the variance of stock returns is expressed as  
percent squared, which is difficult to visualize. On the other hand, the standard 
deviation of stock returns is measured as a percentage, which is much easier 
to interpret. 

Finding the sample variance
Use the following formula to figure out the variance of a sample:

Here’s what each term means:

 ✓ s2 = the sample variance

 ✓  (pronounced “X bar”); this is the sample mean (the average value of 
the sample elements)

 ✓ n = the number of elements in the sample

 ✓ i = an index, assigning a number to each sample element ranging from 1 to n

 ✓ Xi = a single element in the sample

 ✓ Σ = the uppercase Greek letter sigma, which indicates a sum is being 
computed
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The numerator (the top half) of the sample variance formula is:

This expression tells you to perform the following three calculations:

 1. For each sample element, subtract the sample mean.

 2. Square the result.

 3. Compute the sum of these squares.

The denominator (the bottom half) of the sample variance formula is n – 1 
(the sample size minus 1). Then, you find the sample variance by dividing the 
numerator by the denominator.

Finding the sample standard deviation
The sample standard deviation is the square root of the sample variance:

Here’s an example: Say you choose sample of coffee prices from 20 stores 
in 2 supermarket chains: Encore Markets and Pacifica Markets. Figure 4-1a 
shows the distribution of prices at Encore Markets, and Figure 4-1b shows 
the distribution of prices at Pacifica Markets. The price of coffee per pound 
is shown on the horizontal (X) axis, while the number of stores that charge a 
given price are shown on the vertical (Y) axis.

These graphs show that the prices are much more spread out at Pacifica’s 
stores than at Encore’s. In other words, Pacifica has greater dispersion among 
its prices. The range of possible prices at Pacifica’s stores is much greater 
(at least one store charges $20 per pound!), while at Encore, no store charges 
more than $14. The stores at both chains charge at least $8 per pound. The 
dispersion among coffee prices is measured by the standard deviation, which 
is $3.6631 at Pacifica’s stores and $2.1637 at Encore’s stores. These numbers 
confirm what Table 4-1 shows: There’s more spread among Pacifica’s prices 
than Encore’s prices. 

Tables 4-1 and 4-2 show the prices at 20 stores in each of the two chains.
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Figure 4-1 (a 
and b): 

Distribution 
of coffee 
prices at 

Encore 
Markets 

and Pacifica 
Markets.

 

Table 4-1 Sample Coffee Prices at Encore Markets
8 10 11 8
8 9 8 8
13 8 9 14
12 8 12 14
10 12 8 9
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Table 4-2 Sample Coffee Prices at Pacifica Markets
15 17 9 7
13 7 7 9
9 8 7 7
9 13 7 11
19 11 7 7

The first step is to compute the sample mean coffee price. In this example, 
the sample mean for Encore is computed as follows:

The numerator is the sum of the coffee prices in the sample, which is 199. 
The denominator is the sample size, which is 20. The ratio of these two 
values is the sample mean, $9.95.

To compute the sample variance, subtract the sample mean from each 
sample coffee price, and square the results. The sum of these terms is the 
numerator of the sample variance formula. This is shown in the Table 4-3.

Table 4-3 Calculations for the Sample Variance  
 at Encore Markets
(8 – 9.95)2 = 
3.8025

(10 – 9.95)2 = 
0.0025

(11 – 9.95)2 = 
1.1025

(8 – 9.95)2 = 
3.8025

(8 – 9.95)2 = 
3.8025

(9 – 9.95)2 = 
0.9025

(8 – 9.95)2 = 
3.8025

(8 – 9.95)2 = 
3.8025

(13 – 9.95)2 = 
9.3025

(8 – 9.95)2 = 
3.8025

(9 – 9.95)2 = 
0.9025

(14 – 9.95)2 = 
16.4025

(12 – 9.95)2 = 
4.2025

(8 – 9.95)2 = 
3.8025

(12 – 9.95)2 = 
4.2025

(14 – 9.95)2 = 
16.4025

(10 – 9.95)2 = 
0.0025

(12 – 9.95)2 = 
4.2025

(8 – 9.95)2 = 
3.8025

(9 – 9.95)2 = 
0.9025

The sum of these terms is 88.95. The sample variance is, therefore:
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Now, at last! Take the square root. The sample standard deviation is:

Compute the sample variance and sample standard deviation for Pacifica 
Markets the same way. Table 4-4 shows the calculations for the numerator of 
the sample variance formula.

Table 4-4 Calculations for the Sample Variance  
 at Pacifica Markets
(15 – 9.95)2 = 
25.5025

(17 – 9.95)2 = 
49.7025

(9 – 9.95)2 = 
0.9025

(7 – 9.95)2 = 
8.7025

(13 – 9.95)2 = 
9.3025

(7 – 9.95)2 = 
8.7025

(7 – 9.95)2 = 
8.7025

(9 – 9.95)2 = 
0.9025

(9 – 9.95)2 = 
0.9025

(8 – 9.95)2 = 
3.8025

(7 – 9.95)2 = 
8.7025

(7 – 9.95)2 = 
8.7025

(9 – 9.95)2 = 
0.9025

(13 – 9.95)2 = 
9.3025

(7 – 9.95)2 = 
8.7025

(11 – 9.95)2 = 
1.1025

(19 – 9.95)2 = 
81.9025

(11 – 9.95)2 = 
1.1025

(7 – 9.95)2 = 
8.7025

(7 – 9.95)2 = 
8.7025

The sum of these terms is 254.95. The sample variance is, therefore:

The sample standard deviation is:

These numbers confirm what Figure 4-1a and Figure 4-1b show: There’s more 
spread among Pacifica’s prices than Encore’s prices. $2.1637 compared to 
$3.6631.

 Although you can use graphs to inspect the dispersion of different samples or 
populations, comparing standard deviations is usually easier, and you don’t 
have to examine the entire data set.
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The standard deviation is a more useful measure of dispersion than variance. 
Again, variance is expressed in squared units (percent squared, dollars 
squared, and so on) because it’s taken from the sum of squared differences 
between the elements in a data set and the mean of the data set. That’s not as 
handy as standard deviation.

For example, Table 4-5 compares the variance and standard deviation of the 
Encore and Pacifica stores.

Table 4-5 Variance and Standard Deviation of Sample Stores
Encore Pacifica

Standard deviation ($/pound) 2.1637 3.6631
Variance ($2/pound) 4.6816 13.4184

Table 4-5 shows that the variance of coffee prices at Encore is $4.6816 
squared per pound, while the variance of coffee prices at Pacifica is $13.4184 
squared per pound. Dollars squared is a difficult concept to interpret — prices 
are never expressed in terms of dollars squared! So people most often use 
the standard deviation rather than the variance to show dispersion.

Calculating population variance  
and standard deviation
Unlike the mean, median, and mode, the variance and the standard deviation 
are calculated slightly differently for samples and populations. The following 
section shows the appropriate formulas for computing the variance and  
standard deviation of a population.

Finding the population variance
When you’re calculating the variance for a population, use the following  
formula:

The parameters are:

 ✓ σ2 = population variance (σ is the lowercase Greek letter sigma)

 ✓ μ = the population mean (μ is the Greek letter mu)
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 Σ is the uppercase Greek letter sigma, which represents summation σ is the 
lowercase sigma, which represents the population standard deviation.

The numerator (the top half) of the population variance formula is:

Use this formula and do the following calculations:

 1. For each population element, subtract the population mean.

 2. Square the result.

 3. Compute the sum of the squares.

The denominator (the bottom half) of the population variance formula is 
n (the population size.) You find the population variance by dividing the 
numerator of the population variance formula by the denominator.

Finding the population standard deviation
After you figure out the population variance, you can get the population  
standard deviation by taking the square root of the population:

For example, suppose an investor wants to analyze the dispersion of Alpha, 
Inc.’s, sales from one year to the next. Table 4-6 shows the sample of annual 
profits the investor takes (measured in millions of dollars per year) from 2007 
to 2012.

Table 4-6 Alpha, Inc . Sales 2007–2012
Year Sales ($ million)
2007 18
2008 22
2009 31
2010 29
2011 42
2012 50
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You find the population variance by following these steps:

 1. Find the population mean. 

  The formula for calculating the sample mean is

 

  Plug in the numbers from Table 4-6:

 

  The average annual profit during this period was $32 million.

 2. Work through the numerator of the sample variance formula.

 

  The calculations are shown in Table 4-7.

Table 4-7 Calculations of Population Variance for Alpha, Inc .
Year Alpha, Inc. Sales 

($ million)
2007 18 18 – 32 = –14 (–14)2 = 196
2008 22 22 – 32 = –10 (–10)2 = 100
2009 31 31 – 32 = –1 (–1)2 = 1
2010 29 29 – 32 = –3 (–3)2 = 9
2011 42 42 – 32 = 10 (10)2 = 100
2012 50 50 – 32 = 18 (18)2 = 324

Sum 730

In the third column ( ), subtract the mean return from the actual 
return for each year. In the fourth column ( ), square the result 
from the third column. The sum of the fourth column is the numerator of 
the sample variance formula; this equals 730.

 3. Solve the denominator of the population variance formula. 

The denominator is 6. Because six elements are in this population, n = 6.
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 4. Substitute these values into the population variance formula.

The population variance of Alpha’s sales is $121.667 dollars squared.

Finding the population standard deviation
After you figure out the population variance, you get the population standard 
deviation by taking the square root of the population variance:

The population standard deviation of Alpha’s sales is $11.030 million.

Finding the Relative Position of Data
Identifying the location or position of a value in a data set can be immensely 
useful, whether you’re talking about business profitability, population  
statistics, or scores on school tests. You use three related measures known 
as percentiles, quartiles, and the interquartile range.

A percentile is a value that divides a sample or population into two groups, 
with a specified percentage in each group. For example, on a standardized 
exam, the 10th percentile is the score such that:

10 percent of the scores are below it

90 percent of the scores are above it

Quartiles are closely related to percentiles; they subdivide a sample or a 
population into four equal parts. The interquartile range identifies the middle 
50 percent.

Percentiles: Dividing everything  
into hundredths
Percentiles split up a data set into 100 equal parts, each consisting of 1 percent 
of the values in the data set.
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For example, suppose a corporation is analyzing the annual sales of its  
franchise owners. Those franchises whose sales belong to the 90th percentile 
will get an award. Being in the 90th percentile means that:

90 percent of the franchises have sales below this value

10 percent of the franchises have sales above this value

As a result, 10 percent of the franchises will receive the award. When you 
hear someone say that he or she is in the “top 10 percent,” you can take that 
to mean that they are in the 90th percentile.

Percentiles provide a relative ranking for an element of a data set. For 
example, suppose that the corporation’s New York franchise has sales of $1 
million during the year. Judging whether this franchise is successful without 
knowing how this value compares with the other franchises is difficult. If it 
turns out that $1 million places the New York franchise in the 10th percentile, 
then 90 percent of the other franchises outperformed it this year. On the 
other hand, if $1 million places the New York franchise in the 80th percentile, 
then only 20 percent of the other franchises outperformed it this year.

 The 50th percentile of a data set is the median because half of the values are 
below the median, and half are above.

Suppose the Federal Reserve Bank of New York conducts a survey of the 
assets of the savings banks in its district. A sample of ten banks is chosen; 
the results (in hundreds of millions of dollars) are:

2, 3, 5, 7, 6, 4, 8, 9, 1, 2

To compute percentiles, first sort the elements from the smallest value to the 
largest. In this example, the sorted values are:

1, 2, 2, 3, 4, 5, 6, 7, 8, 9

There are several possible approaches to computing percentiles. One of 
them is to apply the following formula to compute an index. This index  
represents the location of the appropriate percentile.

Here, P is the percentile of interest (30th, 40th, and so on), and n is the size 
of the sample or population. You round the number to the nearest integer 
(whole number). The percentile equals the corresponding value in the  
data set.

 When rounding a number with a fractional part, if the fractional part is 0.5 or 
greater, round up to the next higher integer; otherwise, round down to the 
next lower integer. For example, you round 3.4 down to 3, and 3.5 up to 4.
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For example, in order to find the 30th percentile of a set of ten, the index is

Round 3.5 up to 4 to see that the fourth smallest value, the number 3 in this 
example, is the 30th percentile.

1, 2, 2, 3, 4, 5, 6, 7, 8, 9

Similarly, you find the 70th percentile of a set of ten as follows:

Don’t forget to round 7.5 up to 8, which shows that the eighth smallest value, 
or the number 7 in this example, is the 70th percentile.

1, 2, 2, 3, 4, 5, 6, 7, 8, 9

 Microsoft Excel uses a somewhat different approach to computing percentiles. 
If you use the PERCENTILE function, you will get 2.7 for the 30th percentile 
and 6.3 for the 70th percentile.

Quartiles: Dividing everything into fourths
Quartiles split up a data set into four equal parts, each consisting of 25 percent 
of the sorted values in the data set. Quartiles are related to percentiles like so:

First quartile (Q1) = 25th percentile

Second quartile (Q2) = 50th percentile

Third quartile (Q3) = 75th percentile

 Because the second quartile is the 50th percentile, it’s also the median of a 
data set. The fourth quartile usually isn’t used because its value is greater 
than every element in a data set, so what’s the point?

One commonly used approach for calculating quartiles follows these two steps:

 1. Split the data into a lower half and an upper half (leaving out the 
median).

 2. Compute the median of the lower half and the upper half.

After you’ve split the data into lower and upper halves, you figure out the 
quartiles as follows:
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Q1= the median of the lower half

Q2 = the median of the entire data set

Q3 = the median of the upper half

The following data represent a sample of eight stock returns for Gamma 
Industries:

5, 7, 6, 3, 0, –2, 4, 3

The sorted values are:

–2, 0, 3, 3, 4, 5, 6, 7

In this example, you have eight elements. Because 8 is an even number, the 
median is the average of the fourth and fifth elements: –2, 0, 3, 3, 4, 5, 6, 7

(3 + 4)/2 = 3.5. Therefore, the second quartile (Q2) is 3.5.

The values below the median constitute the lower half of the sorted sample

–2, 0, 3, 3

The values above the median constitute the upper half of the sorted sample

4, 5, 6, 7

Both the lower and upper halves have four sample elements. Because 
four is an even number, the median is the average of the second and third 
elements.

For the lower half, the median is: (0 + 3)/2 = 1.5. This is the average value 
of the two middle elements. Therefore, the first quartile (Q1) is 1.5.

For the upper half, the median is (5 + 6)/2 = 5.5. Therefore, the third  
quartile (Q3) is 5.5.

 As with percentiles, Microsoft Excel uses a different approach to computing 
quartiles; if you use the QUARTILE function, you will get 3.5 for Q2, but you will 
also get

2.25 for Q1 (instead of 1.5)

5.25 for Q3 (instead of 5.5)

Interquartile range: Identifying  
the middle 50 percent
The interquartile range (IQR) is the difference between the third quartile and 
the first quartile: IQR = Q3 – Q1. The IQR represents the middle 50 percent of the 
data set. For the Gamma Industries example, the IQR is Q3 – Q1 = 5.5 – 1.5 = 4.
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 An advantage of the IQR is that it isn’t greatly affected by outliers — values 
within a data set that are significantly different than the other elements in the 
data set. In fact, the IQR can help identify outliers within a data set.

You can find the outliers in a data set in several ways. One of the simpler 
approaches is to create a lower bound and an upper bound. What this means 
is that if any elements are below the lower bound or above the upper bound, 
they’re outliers. You set these bounds based on quartiles and the interquartile 
range:

lower bound: Q1 – 1.5(IQR)

upper bound: Q3 + 1.5(IQR)

Based on the Gamma Industries data, the lower bound = 1.5 – 1.5(4) = –4.5, 
and the upper bound = 5.5 + 1.5(4) = 11.5.

Because no value in this sample is below –4.5 or above 11.5, the sample has 
no outliers.

Measuring Relative Variation
Relative variation refers to the spread of a sample or a population as a  
proportion of the mean. Relative variation is useful because it can be 
expressed as a percentage, and is independent of the units in which the 
sample or population data are measured. 

For example, you can use a measure of relative variation to compare the 
uncertainty or variation associated with the temperature in two different 
countries, even if one country uses Fahrenheit temperatures and the other 
uses Celsius temperatures. As another example, a measure of relative  
variation can be useful for comparing the returns earned by two portfolio 
managers. It wouldn’t make any sense to compare the mean returns achieved 
by two different managers without explicitly considering the levels of risk 
that they have incurred. A measure of relative variation provides a number 
that considers both the risk and the return of a portfolio, so that it can be 
determined which portfolio is riskier relative to the return.

You can use several different types of measures of relative variation. One of 
the most popular is known as the coefficient of variation.
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Coefficient of variation: The spread  
of a data set relative to the mean
The coefficient of variation (CV) indicates how “spread out” the members of a 
sample or population are relative to the mean. The coefficient of variation is 
measured as a percentage, so it’s independent of the units in which the mean 
and standard deviation are measured. This enables the relative variation of 
different samples or populations to be compared directly to each other. 

For example, the coefficient of variation can express the risk of an investment 
portfolio per unit of return. This means you can compare the performance of 
different portfolios to see which one offers the least amount of risk per unit 
of return.

Here’s the formula for finding the coefficient of variation for either samples 
or populations:

Suppose a corporation requires the services of a consulting firm to improve 
its accounting systems. The corporation has determined that the two best 
choices are Superior Accounting, Inc., and Data Services Corp. The corporation  
has done some research about the pricing practices of these two firms. 
The average price charged per hour, along with the standard deviation, are 
shown in Table 4-8:

Table 4-8 Comparative Prices Charged by Superior  
 Accounting and Data Services

Superior Accounting Data Services
Mean price ($/hour) $200 $175
Standard deviation ($/hour) $80 $75

Based on this data, the coefficient of variation for the prices charged by each 
firm are 

Superior Accounting: 

Data Services: 
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These results show that although the prices charged by Superior Accounting 
have a larger standard deviation than Data Services, the relative variation of 
Data Services is greater (42.86 percent compared with 40.00 percent.) This 
indicates that the relative uncertainty associated with Data Services’ prices is 
greater than for Superior Accounting’s prices.

Comparing the relative  
risks of two portfolios
Suppose a portfolio manager is responsible for an insurance company’s 
equity portfolio and bond portfolio. He wants to know which portfolio is 
riskier in absolute and relative terms. He takes a sample of returns from the 
past ten years and computes the mean and standard deviation. See Table 4-9 
for the results:

Table 4-9 Comparative Performance of Bond and Equity Portfolios
Bond Portfolio Equity Portfolio

Mean return 8% 20%
Standard deviation of returns 16% 30%

These results show that the equity portfolio offers a higher average (mean) 
return than the bond portfolio and that the equity portfolio is riskier in  
absolute terms than the bond portfolio.

Because the two portfolios offer different returns and different levels of risk, 
it’s impossible to compare them directly without using a measure of relative 
risk, which shows how risky a portfolio is relative to its return. So you need 
to find the coefficient of variation for the two portfolios, using the CV formula:

Bond: 

Equity: 

The bond portfolio offers a level of risk that’s 200 percent of the average 
return, while the equity portfolio offers a level of risk that’s 150 percent of 
the average return. So while the equity portfolio is riskier in absolute terms 
(due to the higher standard deviation) the bond portfolio is riskier in relative 
terms (due to the higher coefficient of variation).



Chapter 5

Measuring How Data Sets Are 
Related to Each Other

In This Chapter
▶ Working with measures of association: covariance and correlation
▶ Determining the correlation coefficient

A 
 measure of association is a numerical value that reflects the tendency 
of two variables to move in the same direction or in opposite direc-

tions. For example, it makes sense that corporate profits and sales would 
both tend to increase when the economy is strong, and decrease when the 
economy is weak. A measure of association is used to assign a numerical 
value to the strength and direction of this type of relationship.

Measures of association can help answer questions, such as, “If interest rates 
fall, do stock prices tend to rise?” or “If oil prices rise, does the unemploy-
ment rate tend to rise?” or “Does an increase in advertising expenditures lead 
to greater revenues?”

The two most widely used measures of association are known as covariance 
and correlation.

In this chapter, you see formulas for computing covariance and correlation 
for both samples and populations. The relationship between two variables 
is illustrated with a type of graph known as a scatter plot, which is useful for 
seeing the relationship that exists (if any) between two variables. (I cover 
several types of graphs such as the scatter plot in Chapter 2.) This chapter 
concludes by illustrating how the risks of a portfolio of stocks may be diversi-
fied if the stocks have low or negative correlations between them.

Understanding Covariance and Correlation
Two of the most widely used measures of association are known as covari-
ance and correlation. These are closely related to each other. You can think 
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of correlation as a modified version of covariance. Correlation is easier to 
interpret because its value is always between –1 and 1. For example, a corre-
lation of 0.9 indicates a very strong relationship in which two variables nearly 
always move in the same direction; a correlation of –0.1 shows a very weak 
relationship in which there is a slight tendency for two variables to move 
in opposite directions. With covariance, there is no minimum or maximum 
value, so the values are more difficult to interpret. For example, a covariance 
of 50 may show a strong or weak relationship; this depends on the units in 
which covariance is measured.

 

Correlation is a measure of the strength and direction of two linearly 
related variables. Two variables are said to be linearly related if they can be 
expressed with the following equation:

 Y = mX + b

X and Y are variables; m and b are constants. For example, suppose that the 
relationship between two variables is:

 Y = 3X + 4

3 is the coefficient of X; this indicates that an increase of X by 1 causes Y to 
increase by 3. Equivalently, a decrease of X by 1 causes Y to decrease by 3. 
The 4 in this equation indicates that Y equals 4 when X equals 0.

Covariance and correlation show that variables can have a positive relation-
ship, a negative relationship, or no relationship at all. With covariance and 
correlation, there are three cases that may arise:

 ✓ If two variables increase or decrease at the same time, the covariance 
and correlation between them is positive. For example, the covari-
ance and correlation between the stock prices of two oil companies is 
positive because many of the same factors affect the stock prices in the 
same way.

 ✓ If two variables move in opposite directions, the covariance and 
correlation between them is negative. For example, the covariance 
and correlation between interest rates and new home sales is negative 
because rising interest rates increase the cost of purchasing a new 
home, which in turn reduces new home sales. The opposite occurs 
with falling interest rates.

 ✓ If two variables are unrelated to each other, the covariance and cor-
relation between them is zero (or very close to zero). For example, the 
covariance and correlation between gold prices and new car sales is 
zero because the two have nothing to do with each other.

In the following sections, I introduce formulas for computing sample covari-
ance, sample correlation, population covariance, and population correlation. 
These measures are illustrated with several examples.
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Sample covariance and correlation
Sample covariance measures the strength and the direction of the relationship 
between the elements of two samples. (Recall from Chapter 1 that a sample is a 
randomly chosen selection of elements from an underlying population.)

The sample covariance between X and Y is

Here’s what each element in this equation means:

 ✓ sXY = the sample covariance between variables X and Y (the two sub-
scripts indicate that this is the sample covariance, not the sample stan-
dard deviation).

 ✓  (“X bar”) = the sample mean for X.

 ✓  (“Y bar”) = the sample mean for Y.

 ✓ n = the number of elements in both samples.

 ✓ i = an index that assigns a number to each sample element, ranging from 
1 to n.

 ✓ Xi = a single element in the sample for X.

 ✓ Yi = a single element in the sample for Y.

 ✓ Σ = the uppercase Greek letter sigma that indicates that a sum is being 
computed.

The sample covariance may have any positive or negative value.

You calculate the sample correlation (also known as the sample correlation 
coefficient) between X and Y directly from the sample covariance with the fol-
lowing formula:

The key terms in this formula are

 ✓ rXY = sample correlation between X and Y

 ✓ sXY = sample covariance between X and Y

 ✓ sX = sample standard deviation of X

 ✓ sY = sample standard deviation of Y
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The formula used to compute the sample correlation coefficient ensures that 
its value ranges between –1 and 1.

For example, suppose you take a sample of stock returns from the Excelsior 
Corporation and the Adirondack Corporation from the years 2008 to 2012, as 
shown here: 

Year Excelsior Corp. Annual 
Return (percent) (X)

Adirondack Corp. Annual 
Return (percent) (Y)

2008 1 3
2009 –2 2
2010 3 4
2011 0 6
2012 3 0

What are the covariance and correlation between the stock returns? To 
figure that out, you first have to find the mean of each sample. (The sample 
mean is discussed in Chapter 3.) In this example, X represents the returns to 
Excelsior and Y represents the returns to Adirondack.

 ✓ The sample mean of X is

You obtain the sample mean by summing all the elements of the sample and 
then dividing by the sample size. In this case, the sample elements sum to 5 
and the sample size is 5. Dividing these numbers gives a sample mean of 1.

 ✓ The sample mean of Y is

Table 5-1 shows the remaining calculations for the sample covariance:
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Table 5-1 Computing the Sample Covariance
Year Excelsior 

Corp 
Annual 
Return 
(percent)

Adirondack 
Corp 
Annual 
Return 
(percent)

  

2008 1 3 1 – 1 = 0 3 – 3 = 0 (0)(0) = 0
2009 –2 2 –2 – 1 = 

–3
2 – 3 = –1 (–3)(–1) = 3

2010 3 4 3 – 1 = 2 4 – 3 = 1 (2)(1) = 2
2011 0 6 0 – 1 = 

–1
6 – 3 = 3 (–1)(3)= –3

2012 3 0 3 – 1 = 2 0 – 3 = –3 (2)(–3) = –6
Mean 1 3 Sum –4

The  column represents the differences between each return 
to Excelsior in the sample and the sample mean; similarly, the  
column represents the same calculations for Adirondack. The entries in the 

 column equal the product of the entries in the previous two 
columns. The sum of the  column gives the numerator in the 
sample covariance formula:

The denominator equals the sample size minus one, which is 5 – 1 = 4. (Both 
samples have five elements, n = 5.) Therefore, the sample covariance equals

To calculate the sample correlation coefficient, divide the sample covariance 
by the product of the sample standard deviation of X and the sample stan-
dard deviation of Y:

You find the sample standard deviation of X by computing the sample variance 
of X and then taking the square root of the result (as I explain in Chapter 4). 
Table 5-2 shows the calculations for the sample variance of X.
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Table 5-2 Computing the Sample Variance for Excelsior
Year Excelsior Corp . Annual 

Return (percent)
2008 1 1 – 1 = 0 (0)2 = 0
2009 –2 –2 – 1 = –3 (–3)2 = 9
2010 3 3 – 1 = 2 (2)2 = 4
2011 0 0 – 1 = –1 (–1)2 = 1
2012 3 3 – 1 = 2 (2)2 = 4
Mean 1 Sum 18

The  column represents the differences between each return to 
Excelsior in the sample and the sample mean; the  column represents 
the squared difference between each return to Excelsior and the sample mean.
The sum of the  column gives the numerator in the sample variance 
formula. You divide this number by the sample size minus one (5 – 1 = 4) to 
get the sample variance of X:

The sample standard deviation of X is the square root of 4.5, or .

Table 5-3 shows the calculations for the sample variance of Y.

Table 5-3 Computing the Sample Variance for Adirondack
Year Adirondack Corp . Annual 

Return (percent)
2008 3 3 – 3 = 0 (0)2 = 0
2009 2 2 – 3 = –1 (–1)2 = 1
2010 4 4 – 3 = 1 (1)2 = 1
2011 6 6 – 3 = 3 (3)2 = 9
2012 0 0 – 3 = –3 (–3)2 = 9
Mean 3 Sum 20
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Based on the calculations in Table 5-3, the sample variance of Y equals

The sample standard deviation of Y equals the square root of 5, or .

Substituting these values into the sample correlation formula gives you

The negative result shows that there’s a weak negative correlation between 
the stock returns of Excelsior and Adirondack. If two variables are perfectly 
negatively correlated (they always move in opposite directions), their cor-
relation will be –1. If two variables are independent (unrelated to each other), 
their correlation will be 0. The correlation between the returns to Excelsior 
and Adirondack stock is a –0.2108, which indicates that the two variables 
show a slight tendency to move in opposite directions.

Population covariance and  
correlation coefficient
The population covariance measures the strength and the direction of the 
relationship between the elements of two populations. It’s computed in a 
manner similar to the sample covariance.

You use the following formula to find the population covariance:

The key terms here are

 ✓ σXY = the population covariance between variables X and Y

 ✓  = the population mean for X

 ✓  = the population mean for Y



78 Part I: Getting Started with Business Statistics 

 ✓ n = the number of elements in both populations

 ✓ i = an index that assigns a number to each population element, ranging 
from 1 to n

 ✓ Xi = a single element in the population for X

 ✓ Yi = a single element in the population for Y

 ✓ Σ = the uppercase Greek letter sigma that indicates a sum is being  
computed

The population correlation coefficient is based on the population covariance. 
You use the following formula to find the population correlation coefficient:

The key terms here are

  ρXY = the population correlation coefficient between variables X and Y

  σXY = the population covariance between variables X and Y

  σX = the population standard deviation of variable X

  σY = the population standard deviation of variable Y

For example, suppose that two new companies were created in 2008: Theta 
Corp. and Eta Corp. The returns to the two companies’ stocks from 2008 to 
2012 are shown in Table 5-4:

Table 5-4 Annual Returns to Theta and Eta
Year Theta Corp. Annual Return  

(percent) (X)
Eta Corp. Annual Return  
(percent) (Y)

2008 11 6
2009 9 5
2010 4 1
2011 2 9
2012 5 12

Because these companies have been in business only since 2008, each set of 
returns represents a population (the entire history of returns).

The population covariance and correlation between the returns to these 
stocks are computed as follows.
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 ✓ The population mean of X is

The population mean is obtained by summing all the elements of the popula-
tion and then dividing by the population size. In this case, the 5 population 
elements sum to 31, and the population size is 5. Dividing these numbers 
gives a population mean of 6.2.

 ✓ The population mean of Y is

Table 5-5 shows the remaining calculations for the population covariance:

Table 5-5 Computing the Population Covariance
Year Theta Corp . 

Annual 
Return 
(percent) 
(X)

Eta Corp . 
Annual 
Return 
(percent) 
(Y)

2008 11 6 11 – 6.2 
= 4.8

6 – 6.6 
= –0.6

(4.8)(–0.6)  
= –2.88

2009 9 5 9 – 6.2 
= 2.8

5 – 6.6 
= –1.6

(2.8)(–1.6)  
= –4.48

2010 4 1 4 – 6.2 
= –2.2

1 – 6.6 
= –5.6

(–2.2)( –5.6)  
= 12.32

2011 2 9 2 – 6.2 
= –4.2

9 – 6.6 
= 2.4

(–4.2)(2.4)  
= –10.08

2012 5 12 5 – 6.2 
= –1.2

12 – 6.6 
= 5.4

(–1.2)(5.4)  
= –6.48

Mean 6 .2 6 .6 Sum –11 .60
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The sum of the  column gives the numerator in the popula-
tion covariance formula:

The denominator equals the population size, which is 5. Therefore, the popu-
lation covariance equals

To calculate the population correlation coefficient, divide the population 
covariance by the product of the population standard deviation of X and the 
population standard deviation of Y:

You find the population standard deviation of X by computing the popula-
tion variance of X and then taking the square root of the result (as I explain in 
Chapter 4). Table 5-6 shows the calculations for the population variance of X.

Table 5-6 Computing the Population Variance for Theta
Year Theta Corp . Annual 

Return (%) (X)
2008 11 11 – 6.2 = 4.8 (4.8)2 = 23.04
2009 9 9 – 6.2 = 2.8 (2.8)2 = 7.84
2010 4 4 – 6.2 = –2.2 (–2.2)2 = 4.84
2011 2 2 – 6.2 = –4.2 (–4.2)2 = 17.64
2012 5 5 – 6.2 = –1.2 (–1.2)2 = 1.44
Mean 6 .2 Sum 54 .80

The sum of the  column gives the numerator in the population vari-
ance formula. You divide this number by the population size to get the popu-
lation variance of X:
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The population standard deviation of X is the square root of 10.96, or 
.

Table 5-7 shows the calculations for the population variance of Y.

Table 5-7 Computing the Population Variance  
 for Eta Corporation
Year Eta Corp . Annual Return  

(percent) (Y)
2008 6 6 – 6.6 = –0.6 (–0.6)2 = 0.36
2009 5 5 – 6.6 = –1.6 (–1.6)2 = 2.56
2010 1 1 – 6.6 = –5.6 (–5.6)2 = 31.36
2011 9 9 – 6.6 = 2.4 (2.4)2 = 5.76
2012 12 12 – 6.6 = 5.4 (5.4)2 = 29.16
Mean 6 .6 Sum 69 .2

Based on the calculations in Table 5-7, the population variance of Y equals

The population standard deviation of Y equals the square root of 13.84, or 
.

Substituting these values into the population correlation formula gives you:
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The negative result shows that there’s a weak negative correlation between 
the stock returns of Theta and Eta.

Comparing correlation and covariance
When trying to find the relationship between two variables, you see that the 
correlation coefficient has several advantages over the covariance, including 
the following:

 ✓ The covariance has no lower or upper limits, whereas the correlation 
coefficient ranges between –1 and 1, making it easier to interpret its 
meaning.

  In the example with the returns to Excelsior and Adirondack stock (in 
the earlier section “Sample covariance and correlation”), the covariance 
is –1. Although this negative number indicates a tendency for the stock 
returns to move in opposite directions, it’s difficult to judge the strength of 
this relationship. On the other hand, the correlation coefficient is –0.2108; 
because the correlation coefficient ranges from –1 to 1, you can see that 
the relationship between the stock returns is negative but not very strong.

 ✓ Unlike the covariance, the value of the correlation isn’t affected by 
the units in which X and Y are measured. For example, suppose that a 
sample of tuna is chosen from the catch of two different fishing boats. 
The covariance between the weights of the tuna caught by the two boats 
is computed. The value of the covariance is different if the weights are 
expressed in kilograms or in pounds; however, the correlation is the 
same whether weights are expressed in kilograms or pounds.

To illustrate the second point further, say you record a sample of the average 
temperatures (in Celsius and Fahrenheit) in two cities from 2008 to 2012 and 
come up with the following results.

Year City 1 
(Celsius)

City 2 
(Celsius)

City 1 
(Fahrenheit)

City 2 
(Fahrenheit)

2008 0.0°C –10.0°C 32.0°F 14.0°F
2009 20.0°C 15.0°C 68.0°F 59.0°F
2010 –8.0°C 22.0°C 17.6°F 71.6°F
2011 25.0°C 30.0°C 77.0°F 86.0°F
2012 14.0°C 25.0°C 57.2°F 77.0°F
Mean 10.2°C 16.4°C 50.4°F 61.5°F

Assume that X represents the temperature in City 1 and Y represents the 
temperature in City 2. Table 5-8 shows the calculations for the covariance 
between the temperatures in Celsius of both cities.
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Table 5-8 Covariance between Celsius Temperatures 
 in City 1 and City 2
Year City 1 

(Celsius)
City 2 
(Celsius)

2008 0.0°C –10.0°C 0.0 – 10.2 
= –10.2

–10.0 – 16.4 
= –26.4

(–10.2)(–26.4)  
= 269.3

2009 20.0°C 15.0°C 20.0 – 10.2 
= 9.8

15.0 – 16.4  
= –1.4

(9.8)(–1.4) 
 = –13.7

2010 –8.0°C 22.0°C –8.0 – 10.2 
= –18.2

22.0 – 16.4 
= 5.6

(–18.2)(5.6)  
= –101.9

2011 25.0°C 30.0°C 25.0 – 10.2 
= 14.8

30.0 – 16.4 
 = 13.6

(14.8)(13.6)  
= 201.3

2012 14.0°C 25.0°C 14.0 – 10.2 
= 3.8

25.0 – 16.4 
= 8.6

(3.8)(8.6)  
= 32.7

Mean 10 .2°C 16 .4°C Sum 387.6

The  column represents the differences between each temperature in 
City 1 and the sample mean. The  column represents the differences 
between each temperature in City 2 and the sample mean. The  
column is simply the product of the  column and the  column. 
The sum of the  column gives the numerator in the sample 
covariance formula, which is 387.6.

The denominator equals the sample size minus one, which is 5 – 1 = 4 (because 
both samples have five elements, n = 5.) Therefore, the sample covariance equals

You find the sample standard deviation of X by computing the sample variance 
of X and then taking the square root of the result (see Chapter 4). Table 5-11 
shows the calculations for the sample variance of X (Celsius temperatures for 
City 1):
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Table 5-9 Sample Variance of City 1
Year City 1 (Celsius)

2008 0.0°C 0.0 – 10.2 = –10.2 (–10.2)2 = 104.0
2009 20.0°C 20.0 – 10.2 = 9.8 (9.8)2 = 96.0
2010 –8.0°C –8.0 – 10.2 = –18.2 (–18.2)2 = 331.2
2011 25.0°C 25.0 – 10.2 = 14.8 (14.8)2 = 219.0
2012 14.0°C 14.0 – 10.2 = 3.8 (3.8)2 = 14.4
Mean 10 .2°C Sum 764 .8

To finish the calculation for the sample variance of X, you divide the sum of 
the terms in the  column by the sample size minus one, like so:

The sample standard deviation is the square root of the sample variance, or 
.

Following the same steps, you can find the sample variance of Y with the cal-
culations in Table 5-10.

Table 5-10 Sample Variance of City 2
Year City 2 (C)

2008 –10.0 –10.0 – 16.4 = –26.4 (–26.4)2 = 697.0
2009 15.0 15.0 – 16.4 = –1.4 (–1.4)2 = 2.0
2010 22.0 22.0 – 16.4 = 5.6 (5.6)2 = 31.4
2011 30.0 30.0 – 16.4 = 13.6 (13.6)2 = 185.0
2012 25.0 25.0 – 16.4 = 8.6 (8.6)2 = 74.0
Mean 16 .4 Sum 989 .2

To get the sample variance, divide the sum of the terms in the  
column by the sample size minus one:
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The sample standard deviation is the square root of the sample variance, or 
.

Next, substitute these values into the sample correlation formula:

Repeating these same calculations for the temperatures in Fahrenheit, the 
covariance is 313.96 (compared with 96.9 when measured in Celsius) and the 
correlation remains at 0.4456. The covariance increases with Fahrenheit tem-
peratures because the magnitude of the temperatures is greater, whereas the 
correlation isn’t affected. The fact that the results depend on the units involved 
is one of the major drawbacks of using covariance instead of correlation.

Interpreting the Correlation Coefficient
Interpreting the correlation coefficient is easier than interpreting the covari-
ance. Consider these examples:

 ✓ A correlation of 0.9 (close to the maximum value of 1.0) indicates a 
strong positive relationship between X and Y; when X increases, Y nearly 
always increases, and vice versa.

  A correlation of 0.2 (close to zero) indicates a weak positive relation-
ship; when X increases, Y is somewhat more likely to increase than 
decrease, and vice versa.

 ✓ A correlation of –0.9 (close to the minimum value of –1.0) indicates a 
strong negative relationship between X and Y. Most of the time, when X 
increases, Y decreases; most of the time, when X decreases, Y increases.

  A correlation of –0.2 (close to zero) indicates a weak negative relation-
ship; when X increases, Y is somewhat more likely to decrease than 
increase, and vice versa. 
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 ✓ A correlation of 0 indicates that X and Y are unrelated. When X increases 
or decreases, it has no direct effect on Y increasing or decreasing, and 
vice versa.

In the Fahrenheit and Celsius temperatures example in the previous section, 
the covariance was 96.9 for Celsius temperatures and 313.96 for Fahrenheit 
temperatures. Although the positive values indicate that the temperatures in 
both cities tend to increase or decrease at the same time, using the covari-
ance measure alone makes it difficult to judge the strength of this relation-
ship. On the other hand, the correlation for both Celsius and Fahrenheit 
temperatures was 0.4456, showing that a moderately strong, positive relation-
ship exists between the temperatures in the two cities, whether measured in 
Celsius or Fahrenheit degrees.

In the following sections, you see a type of graph known as a scatter plot to 
illustrate the relationship between two different variables. An extremely 
important application of correlation is introduced; correlation can be used 
to show the degree of diversification that is present in a portfolio of stocks. 
In other words, the correlation can be used to determine how much the addi-
tion of a stock to a portfolio will affect the overall risk of the portfolio.

Showing the relationship between  
two variables
As I discuss in detail in Chapter 2, a scatterplot is a special type of graph 
that shows the relationship between two variables X and Y. The values of 
X are shown on the horizontal axis, and the values of Y are shown on the 
vertical axis. 

Suppose that X represents a corporation’s sales and Y represents its profits. 
Then X and Y would normally have a positive correlation between them, 
because higher sales tend to be associated with higher profits and vice versa. 
Figure 5-1 shows the relationship between two variables with a strong posi-
tive correlation.

Each point on the graph represents a corporation’s sales (X) and its profits 
(Y) during a given year. The graph shows that as X increases, there’s a strong 
tendency for Y to also increase. The straight line is known as a trend line. A 
trend line shows the direction of the points on a scatter plot. It can have a 
positive slope, a negative slope, or a zero slope (which means that the line 
is perfectly flat.) In this example, the trend line is positively sloped, which 
indicates that the correlation between X and Y is also positive. Because the 
points are extremely close to the trend line, the relationship between X and 
Y is very strong. With a weaker relationship, the points would be more scat-
tered around the trend line.
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Figure 5-1: 
Scatterplot 

showing 
a strong 
positive 

relationship 
between X 

and Y.
 

Suppose that X represents a corporation’s costs of production and Y repre-
sents its profits; then X and Y would normally have a negative correlation 
between them, because higher costs tend to be associated with lower profits 
and vice versa. Figure 5-2 shows the relationship between two variables with 
a strong negative correlation.

Each point on the graph represents a corporation’s costs of production (X) 
and its profits (Y) during a given year. The graph shows that as X increases, 
there’s a strong tendency for Y to decrease. The trend line has a negative 
slope, which indicates that the correlation between X and Y is negative.

By contrast, suppose that X represents the average daily temperature and Y 
represents a corporation’s profits. Unless the corporation produces goods 
and services with a seasonal demand, these two variables are likely unre-
lated. Therefore, the correlation between X and Y will also be close to zero.

 

Figure 5-2: 
Scatterplot 

showing 
a strong 
negative 

relationship 
between X 

and Y.
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Figure 5-3 shows the relationship between two unrelated variables.

 

Figure 5-3: 
Scatterplot 

show-
ing two 

unrelated 
variables.

 

Each point on the graph represents the average daily temperature (X) and 
a corporation’s profits (Y) during a given year. The graph shows that as X 
increases, Y sometimes increases and sometimes decreases; no real pattern 
occurs. The trend line is almost perfectly flat, which indicates that the corre-
lation between X and Y is very close to zero.

Application: Correlation and the  
benefits of diversification
You can measure the risk of a stock with the standard deviation of its 
returns. The greater the standard deviation, the further away the returns 
are from the mean on average (that is, the more “spread out” they are.) This 
indicates more uncertainty over the actual return during a given year, so the 
risk is greater. You can measure the diversification benefits of adding a stock 
to a portfolio with the correlation coefficient. The lower the correlation coef-
ficient between two stocks, the greater is the reduction in risk and therefore 
the greater are the benefits of diversification.

For a portfolio of stocks, the risk depends not only on the standard devia-
tions of the individual stocks but also on the correlations between the stocks. 
With low or negative correlations, the portfolio can experience significant 
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reductions in risk, which occurs because losses to some stocks tend to be 
offset by gains by other stocks at any given time. As a result, the variability of 
the portfolio’s returns tends to be lower than the variability of the returns to 
the individual stocks.

The following data is a sample of returns to the stocks of Hilo, Inc., and Lohi 
Corp. during the past ten years.

Year Hilo Lohi
2003 0.03 0.10
2004 0.06 0.10
2005 0.07 0.08
2006 0.09 0.05
2007 0.08 0.04
2008 0.10 0.07
2009 0.09 0.01
2010 0.04 0.02
2011 0.02 0.10
2012 0.06 0.13

Table 5-11 summarizes the sample mean, variance, standard deviation, and 
coefficient of variation of the stock returns.

Table 5-11 Summary Measures for Hilo and Lohi
Hilo Lohi

Mean 0.0640 0.0700
Variance 0.0007 0.0015
Standard deviation 0.0272 0.0392
Coefficient of variation (CV) 42.44 percent 55.94 percent

The sample covariance between the stocks is –0.0004, and the sample corre-
lation coefficient is –0.4179.

Assume that an investor purchased $100,000 of each stock for his portfolio at 
the start of 2003. The returns to the portfolio during this sample period are 
listed here.
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Year Portfolio
2003 0.065
2004 0.080
2005 0.075
2006 0.070
2007 0.060
2008 0.085
2009 0.050
2010 0.030
2011 0.060
2012 0.095

Because the portfolio is composed of 50 percent Hilo stock and 50 percent 
Lohi stock, you calculate the returns to the portfolio by multiplying the 
returns to each individual stock by 0.5 and combining the results, like so:

Portfolio return = 0.5(return to Hilo) + 0.5(return to Lohi)

For example, in 2003, the portfolio return is computed as follows:

Portfolio return = 0.5(0.03) + 0.5(0.10) = 0.065. Table 5-12 summarizes the 
sample mean, variance, standard deviation, and coefficient of variation of the 
portfolio returns.

Table 5-12 Portfolio Summary Measures
Portfolio

Mean 0.0670
Variance 0.0003
Standard deviation 0.0186
Coefficient of variation (CV) 27.74 percent

The mean return to the portfolio is halfway between the mean returns to Hilo 
(0.0640) and Lohi (0.0700). The risk of the portfolio, as measured by the stan-
dard deviation of the returns, is only 0.0186 compared with Hilo (0.0272) and 
Lohi (0.0392). As a result, the portfolio’s coefficient of variation is only 27.74 
percent compared with Hilo at 42.442 percent and Lohi at 55.94 percent.

This substantial reduction in risk is due to the fact that the portfolio is well 
diversified, as seen by the negative correlation (–0.4179) between the returns 
to the two stocks.


